49 resultados para gene cluster

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rugose colony variant of Vibrio cholerae O1, biotype El Tor, is shown to produce an exopolysaccharide, EPSETr, that confers chlorine resistance and biofilm-forming capacity. EPSETr production requires a chromosomal locus, vps, that contains sequences homologous to carbohydrate biosynthesis genes of other bacterial species. Mutations within this locus yield chlorine-sensitive, smooth colony variants that are biofilm deficient. The biofilm-forming properties of EPSETr may enable the survival of V. cholerae O1 within environmental aquatic habitats between outbreaks of human disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a survey of microbial systems capable of generating unusual metabolite structural variability, Streptomyces venezuelae ATCC 15439 is notable in its ability to produce two distinct groups of macrolide antibiotics. Methymycin and neomethymycin are derived from the 12-membered ring macrolactone 10-deoxymethynolide, whereas narbomycin and pikromycin are derived from the 14-membered ring macrolactone, narbonolide. This report describes the cloning and characterization of the biosynthetic gene cluster for these antibiotics. Central to the cluster is a polyketide synthase locus (pikA) that encodes a six-module system comprised of four multifunctional proteins, in addition to a type II thioesterase (TEII). Immediately downstream is a set of genes for desosamine biosynthesis (des) and macrolide ring hydroxylation. The study suggests that Pik TEII plays a role in forming a metabolic branch through which polyketides of different chain length are generated, and the glycosyl transferase (encoded by desVII) has the ability to catalyze glycosylation of both the 12- and 14-membered ring macrolactones. Moreover, the pikC-encoded P450 hydroxylase provides yet another layer of structural variability by introducing regiochemical diversity into the macrolide ring systems. The data support the notion that the architecture of the pik gene cluster as well as the unusual substrate specificity of particular enzymes contributes to its ability to generate four macrolide antibiotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conserved organization of the Hox genes throughout the animal kingdom has become one of the major paradigms of evolutionary developmental biology. We have examined the organization of the Hox genes of the grasshopper, Schistocerca gregaria. We find that the grasshopper Hox cluster is over 700 kb long, and is not split into equivalents of the Antennapedia complex and the bithorax complex of Drosophila melanogaster. SgDax and probably also Sgzen, the grasshopper homologues of fushi-tarazu (ftz) and Zerknüllt (zen), respectively, are also in the cluster, showing that the non-homeotic Antp-class genes, “accessory genes,” are an ancient feature of insect Hox clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A DNA sequence has been obtained for a 35.6-kb genomic segment from Heliobacillus mobilis that contains a major cluster of photosynthesis genes. A total of 30 ORFs were identified, 20 of which encode enzymes for bacteriochlorophyll and carotenoid biosynthesis, reaction-center (RC) apoprotein, and cytochromes for cyclic electron transport. Donor side electron-transfer components to the RC include a putative RC-associated cytochrome c553 and a unique four-large-subunit cytochrome bc complex consisting of Rieske Fe-S protein (encoded by petC), cytochrome b6 (petB), subunit IV (petD), and a diheme cytochrome c (petX). Phylogenetic analysis of various photosynthesis gene products indicates a consistent grouping of oxygenic lineages that are distinct and descendent from anoxygenic lineages. In addition, H. mobilis was placed as the closest relative to cyanobacteria, which form a monophyletic origin to chloroplast-based photosynthetic lineages. The consensus of the photosynthesis gene trees also indicates that purple bacteria are the earliest emerging photosynthetic lineage. Our analysis also indicates that an ancient gene-duplication event giving rise to the paralogous bchI and bchD genes predates the divergence of all photosynthetic groups. In addition, our analysis of gene duplication of the photosystem I and photosystem II core polypeptides supports a “heterologous fusion model” for the origin and evolution of oxygenic photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the α-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-α can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptomyces lavendulae produces complestatin, a cyclic peptide natural product that antagonizes pharmacologically relevant protein–protein interactions including formation of the C4b,2b complex in the complement cascade and gp120-CD4 binding in the HIV life cycle. Complestatin, a member of the vancomycin group of natural products, consists of an α-ketoacyl hexapeptide backbone modified by oxidative phenolic couplings and halogenations. The entire complestatin biosynthetic and regulatory gene cluster spanning ca. 50 kb was cloned and sequenced. It consisted of 16 ORFs, encoding proteins homologous to nonribosomal peptide synthetases, cytochrome P450-related oxidases, ferredoxins, nonheme halogenases, four enzymes involved in 4-hydroxyphenylglycine (Hpg) biosynthesis, transcriptional regulators, and ABC transporters. The nonribosomal peptide synthetase consisted of a priming module, six extending modules, and a terminal thioesterase; their arrangement and domain content was entirely consistent with functions required for the biosynthesis of a heptapeptide or α-ketoacyl hexapeptide backbone. Two oxidase genes were proposed to be responsible for the construction of the unique aryl-ether-aryl-aryl linkage on the linear heptapeptide intermediate. Hpg, 3,5-dichloro-Hpg, and 3,5-dichloro-hydroxybenzoylformate are unusual building blocks that repesent five of the seven requisite monomers in the complestatin peptide. Heterologous expression and biochemical analysis of 4-hydroxyphenylglycine transaminon confirmed its role as an aminotransferase responsible for formation of all three precursors. The close similarity but functional divergence between complestatin and chloroeremomycin biosynthetic genes also presents a unique opportunity for the construction of hybrid vancomycin-type antibiotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 4.6-kb region 5'-upstream from the gene encoding a cobalt-containing and amide-induced high molecular mass-nitrile hydratase (H-NHase) from Rhodococcus rhodochrous J1 was found to be required for the expression of the H-NHase gene with a host-vector system in a Rhodococcus strain. Sequence analysis has revealed that there are at least five open reading frames (H-ORF1 approximately 5) in addition to H-NHase alpha- and beta-subunit genes. Deletion of H-ORF1 and H-ORF2 resulted in decrease of NHase activity, suggesting a positive regulatory role of both ORFs in the expression of the H-NHase gene. H-ORF1 showed significant similarity to a regulatory protein, AmiC, which is involved in regulation of amidase expression by binding an inducer amide in Pseudomonas aeruginosa. H-ORF4, which has been found to be uninvolved in regulation of H-NHase expression by enzyme assay for its deletion transformant and Northern blot analysis for R. rhodochrous J1, showed high similarity to transposases from insertion sequences of several bacteria. Determination of H-NHase activity and H-NHase mRNA levels in R. rhodochrous J1 has indicated that the expression of the H-NHase gene is regulated by an amide at the transcriptional level. These findings suggest the participation of H-ORF4 (IS1164) in the organization of the H-NHase gene cluster and the involvement of H-ORF1 in unusual induction mechanism, in which H-NHase is formed by amides (the products in the NHase reaction), but not by nitriles (the substrates).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sterigmatocystin (ST) and the aflatoxins (AFs), related fungal secondary metabolites, are among the most toxic, mutagenic, and carcinogenic natural products known. The ST biosynthetic pathway in Aspergillus nidulans is estimated to involve at least 15 enzymatic activities, while certain Aspergillus parasiticus, Aspergillus flavus, and Aspergillus nomius strains contain additional activities that convert ST to AF. We have characterized a 60-kb region in the A. nidulans genome and find it contains many, if not all, of the genes needed for ST biosynthesis. This region includes verA, a structural gene previously shown to be required for ST biosynthesis, and 24 additional closely spaced transcripts ranging in size from 0.6 to 7.2 kb that are coordinately induced only under ST-producing conditions. Each end of this gene cluster is demarcated by transcripts that are expressed under both ST-inducing and non-ST-inducing conditions. Deduced polypeptide sequences of regions within this cluster had a high percentage of identity with enzymes that have activities predicted for ST/AF biosynthesis, including a polyketide synthase, a fatty acid synthase (alpha and beta subunits), five monooxygenases, four dehydrogenases, an esterase, an 0-methyltransferase, a reductase, an oxidase, and a zinc cluster DNA binding protein. A revised system for naming the genes of the ST pathway is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agarose-encapsulated, metabolically active, permeabilized nuclei from human hematopoietic cell lines were tested for Z-DNA formation in the beta-globin gene cluster. Biotinylated monoclonal antibodies against Z-DNA were diffused into the nuclei and cross-linked to DNA with a 10-ns laser exposure at 266 nm. Following digestion with restriction enzymes, fragments that had formed Z-DNA were isolated. Seventeen regions with Z-DNA sequence motifs in the 73-kb region were studied by PCR amplification, and five were found in the Z conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The macrocyclic polyketides rapamycin and FK506 are potent immunosuppressants that prevent T-cell proliferation through specific binding to intracellular protein receptors (immunophilins). The cloning and specific alteration of the biosynthetic genes for these polyketides might allow the biosynthesis of clinically valuable analogues. We report here that three clustered polyketide synthase genes responsible for rapamycin biosynthesis in Streptomyces hygroscopicus together encode 14 homologous sets of enzyme activities (modules), each catalyzing a specific round of chain elongation. An adjacent gene encodes a pipecolate-incorporating enzyme, which completes the macrocycle. The total of 70 constituent active sites makes this the most complex multienzyme system identified so far. The DNA region sequenced (107.3 kbp) contains 24 additional open reading frames, some of which code for proteins governing other key steps in rapamycin biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The penicillin biosynthetic genes (pcbAB, pcbC, penDE) of Penicillium chrysogenum AS-P-78 were located in a 106.5-kb DNA region that is amplified in tandem repeats (five or six copies) linked by conserved TTTACA sequences. The wild-type strains P. chrysogenum NRRL 1951 and Penicillium notatum ATCC 9478 (Fleming's isolate) contain a single copy of the 106.5-kb region. This region was bordered by the same TTTACA hexanucleotide found between tandem repeats in strain AS-P-78. A penicillin overproducer strain, P. chrysogenum E1, contains a large number of copies in tandem of a 57.9-kb DNA fragment, linked by the same hexanucleotide or its reverse complementary TGTAAA sequence. The deletion mutant P. chrysogenum npe10 showed a deletion of 57.9 kb that corresponds exactly to the DNA fragment that is amplified in E1. The conserved hexanucleotide sequence was reconstituted at the deletion site. The amplification has occurred within a single chromosome (chromosome I). The tandem reiteration and deletion appear to arise by mutation-induced site-specific recombination at the conserved hexanucleotide sequences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hox complex genes control spatial patterning mechanisms in the development of arthropod and vertebrate body plans. Hox genes are all expressed during embryogenesis in these groups, which are all directly developing organisms in that embryogenesis leads at once to formation of major elements of the respective adult body plans. In the maximally indirect development of a large variety of invertebrates, the process of embryogenesis leads only to a free-living, bilaterally organized feeding larva. Maximal indirect development is exemplified in sea urchins. The 5-fold radially symmetric adult body plan of the sea urchin is generated long after embryogenesis is complete, by a separate process occurring within imaginal tissues set aside in the larva. The single Hox gene complex of Strongylocentrotus purpuratus contains 10 genes, and expression of eight of these genes was measured by quantitative methods during both embryonic and larval developmental stages and also in adult tissues. Only two of these genes are used significantly during the entire process of embryogenesis per se, although all are copiously expressed during the stages when the adult body plan is forming in the imaginal rudiment. They are also all expressed in various combinations in adult tissues. Thus, development of a microscopic, free-living organism of bilaterian grade, the larva, does not appear to require expression of the Hox gene cluster as such, whereas development of the adult body plan does. These observations reflect on mechanisms by which bilaterian metazoans might have arisen in Precambrian evolution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies have suggested that the retention of selectable marker cassettes (like PGK–Neo, in which a hybrid gene consisting of the phosphoglycerate kinase I promoter drives the neomycin phosphotransferase gene) in targeted loci can cause unexpected phenotypes in “knockout” mice due to disruption of expression of neighboring genes within a locus. We have studied targeted mutations in two multigene clusters, the granzyme B locus and the β-like globin gene cluster. The insertion of PGK–Neo into the granzyme B gene, the most 5′ gene in the granzyme B gene cluster, severely reduced the normal expression of multiple genes within the locus, even at distances greater than 100 kb from the mutation. Similarly, the insertion of a PGK–Neo cassette into the β-globin locus control region (LCR) abrogates the expression of multiple globin genes downstream from the cassette. In contrast, a targeted mutation of the promyelocyte-specific cathepsin G gene (which lies just 3′ to the granzyme genes in the same cluster) had minimal effects on upstream granzyme gene expression. Although the mechanism of these long distance effects are unknown, the expression of PGK–Neo can be “captured” by the regulatory domain into which it is inserted. These results suggest that the PGK–Neo cassette can interact productively with locus control regions and thereby disrupt normal interactions between local and long-distance regulatory regions within a tissue-specific domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is part of a cytokine gene cluster and is directly linked to a conserved upstream inducible enhancer. Here we examined the in vitro and in vivo functions of the human GM-CSF enhancer and found that it was required for the correctly regulated expression of the GM-CSF gene. An inducible DNase I-hypersensitive site appeared within the enhancer in cell types such as T cells, myeloid cells, and endothelial cells that express GM-CSF, but not in nonexpressing cells. In a panel of transfected cells the human GM-CSF enhancer was activated in a tissue-specific manner in parallel with the endogenous gene. The in vivo function of the enhancer was examined in a transgenic mouse model that also addressed the issue of whether the GM-CSF locus was correctly regulated in isolation from other segments of the cytokine gene cluster. After correction for copy number the mean level of human GM-CSF expression in splenocytes from 11 lines of transgenic mice containing a 10.5-kb human GM-CSF transgene was indistinguishable from mouse GM-CSF expression (99% ± 56% SD). In contrast, a 9.8-kb transgene lacking just the enhancer had a significantly reduced (P = 0.004) and more variable level of activity (29% ± 89% SD). From these studies we conclude that the GM-CSF enhancer is required for the correct copy number-dependent expression of the human GM-CSF gene and that the GM-CSF gene is regulated independently from DNA elements associated with the closely linked IL-3 gene or other members of the cytokine gene cluster.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ten novel small nucleolar RNA (snoRNA) gene clusters, consisting of two or three snoRNA genes, respectively, were identified from Arabidopsis thaliana. Twelve of the 25 snoRNA genes in these clusters are homologous to those of yeast and mammals according to the conserved antisense sequences that guide 2′-O-ribose methylation of rRNA. The remaining 13 snoRNA genes, including two 5.8S rRNA methylation guides, are new genes identified from A.thaliana. Interestingly, seven methylated nucleotides, predicted by novel snoRNAs Z41a–Z46, are methylated neither in yeast nor in vertebrates. Using primer extension at low dNTP concentration the six methylation sites were determined as expected. These snoRNAs were recognized as specific guides for 2′-O-ribose methylation of plant rRNAs. Z42, however, did not guide the expected methylation of 25S rRNA in our assay. Thus, its function remains to be elucidated. The intergenic spacers of the gene clusters are rich in uridine (up to 40%) and most of them range in size from 35 to 100 nt. Lack of a conserved promoter element in each spacer and the determination of polycistronic transcription from a cluster by RT–PCR assay suggest that the snoRNAs encoded in the clusters are transcribed as a polycistron under an upstream promoter, and individual snoRNAs are released after processing of the precursor. Numerous snoRNA gene clusters identified from A.thaliana and other organisms suggest that the snoRNA gene cluster is an ancient gene organization existing abundantly in plants.