19 resultados para colorectal tumor

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cell genomes contain alterations beyond known etiologic events, but their total number has been unknown at even the order of magnitude level. By sampling colorectal premalignant polyp and carcinoma cell genomes through use of the technique inter-(simple sequence repeat) PCR, we have found genomic alterations to be considerably more abundant than expected, with the mean number of genomic events per carcinoma cell totaling approximately 11,000. Colonic polyps early in the tumor progression pathway showed similar numbers of events. These results indicate that, as with certain hereditary cancer syndromes, genomic destabilization is an early step in sporadic tumor development. Together these results support the model of genomic instability being a cause rather than an effect of malignancy, facilitating vastly accelerated somatic cell evolution, with the observed orderly steps of the colon cancer progression pathway reflecting the consequences of natural selection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC) has been detected only in intestinal mucosa and colon carcinoma cells of placental mammals. However, this receptor has been identified in several tissues in marsupials, and its expression has been suggested in tissues other than intestine in placental mammals. Selective expression of GCC by colorectal tumor cells in extraintestinal tissues would permit this receptor to be employed as a selective marker for metastatic disease. Thus, expression of GCC was examined in human tissues and tumors, correlating receptor function with detection by PCR. GCC was detected by ligand binding and catalytic activation in normal intestine and primary and metastatic colorectal tumors, but not in extraintestinal tissues or tumors. Similarly, PCR yielded GCC-specific amplification products with specimens from normal intestine and primary and metastatic colorectal tumors, but not from extraintestinal tissues or tumors. Northern blot analysis employing GCC-specific probes revealed an ≈4-kb transcript, corresponding to recombinant GCC, in normal intestine and primary and metastatic colorectal tumors, but not in extraintestinal tissues. Thus, GCC is selectively expressed in intestine and colorectal tumors in humans and appears to be a relatively specific marker for metastatic cancer cells in normal tissues. Indeed, PCR of GCC detected tumor cells in blood from some patients with Dukes B colorectal cancer and all patients examined with Dukes C and D colorectal cancer, but not in that from normal subjects or patients with Dukes A colon carcinoma or other nonmalignant intestinal pathologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumors express peptide antigens capable of being recognized by tumor-specific cytotoxic T lymphocytes (CTL). Immunization of mice with a carcinogen-induced colorectal tumor, CT26, engineered to secrete granulocyte/macrophage colony-stimulating factor, routinely generated both short-term and long-term CTL lines that not only lysed the parental tumor in vitro, but also cured mice of established tumor following adoptive transfer in vivo. When either short-term or long-term CTL lines were used to screen peptides isolated from CT26, one reverse-phase high performance liquid chromatography peptide fraction consistently sensitized a surrogate target for specific lysis. The bioactivity remained localized within one fraction following multiple purification procedures, indicating that virtually all of the CT26-specific CTL recognized a single peptide. This result contrasts with other tumor systems, where multiple bioactive peptide fractions have been detected. The bioactive peptide was identified as a nonmutated nonamer derived from the envelope protein (gp70) of an endogenous ecotropic murine leukemia provirus. Adoptive transfer with CTL lines specific for this antigen demonstrated that this epitope represents a potent tumor rejection antigen. The selective expression of this antigen in multiple non-viral-induced tumors provides evidence for a unique class of shared immunodominant tumor associated antigens as targets for antitumor immunity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The level and fate of hMSH3 (human MutS homolog 3) were examined in the promyelocytic leukemia cell line HL-60 and its methotrexate-resistant derivative HL-60R, which is drug resistant by virtue of an amplification event that spans the dihydrofolate reductase (DHFR) and MSH3 genes. Nuclear extracts from HL-60 and HL-60R cells were subjected to an identical, rapid purification protocol that efficiently captures heterodimeric hMutSα (hMSH2⋅hMSH6) and hMutSβ (hMSH2⋅hMSH3). In HL-60 extracts the hMutSα to hMutSβ ratio is roughly 6:1, whereas in methotrexate-resistant HL-60R cells the ratio is less than 1:100, due to overproduction of hMSH3 and heterodimer formation of this protein with virtually all the nuclear hMSH2. This shift is associated with marked reduction in the efficiency of base–base mismatch and hypermutability at the hypoxanthine phosphoribosyltransferase (HPRT) locus. Purified hMutSα and hMutSβ display partial overlap in mismatch repair specificity: both participate in repair of a dinucleotide insertion–deletion heterology, but only hMutSα restores base–base mismatch repair to extracts of HL-60R cells or hMSH2-deficient LoVo colorectal tumor cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have synthesized a recombinant gene encoding a single-chain HLA-A2/beta 2-microglobulin (beta 2m) molecule by linking beta 2m through its carboxyl terminus via a short peptide spacer to HLA-A2 (A*0201). This gene has been expressed in the beta 2m-deficient colorectal tumor cell line DLD-1. Transfection of this cell with the single-chain construct was associated with conformationally correct cell surface expression of a class I molecule of appropriate molecular mass. The single-chain HLA class I molecule presented either exogenously added peptide or (after interferon-gamma treatment) endogenously processed antigen to an influenza A matrix-specific, HLA-A2-restricted cytotoxic T-lymphocyte line. The need for interferon gamma for the processing and presentation of endogenous antigen suggests that DLD-1 has an antigen-processing defect that can be up-regulated, a feature that may be found in other carcinomas. Our data indicate that single-chain HLA class I constructs can form functional class I molecules capable of presenting endogenously processed antigens. Such molecules should be of use for functional studies, as well as providing potential anticancer immunotherapeutic agents or vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel anti-neoplastic agents such as gene targeting vectors and encapsulated carriers are quite large (approximately 100–300 nm in diameter). An understanding of the functional size and physiological regulation of transvascular pathways is necessary to optimize delivery of these agents. Here we analyze the functional limits of transvascular transport and its modulation by the microenvironment. One human and five murine tumors including mammary and colorectal carcinomas, hepatoma, glioma, and sarcoma were implanted in the dorsal skin-fold chamber or cranial window, and the pore cutoff size, a functional measure of transvascular gap size, was determined. The microenvironment was modulated: (i) spatially, by growing tumors in subcutaneous or cranial locations and (ii) temporally, by inducing vascular regression in hormone-dependent tumors. Tumors grown subcutaneously exhibited a characteristic pore cutoff size ranging from 200 nm to 1.2 μm. This pore cutoff size was reduced in tumors grown in the cranium or in regressing tumors after hormone withdrawal. Vessels induced in basic fibroblast growth factor-containing gels had a pore cutoff size of 200 nm. Albumin permeability was independent of pore cutoff size. These results have three major implications for the delivery of therapeutic agents: (i) delivery may be less efficient in cranial tumors than in subcutaneous tumors, (ii) delivery may be reduced during tumor regression induced by hormonal ablation, and (iii) permeability to a molecule is independent of pore cutoff size as long as the diameter of the molecule is much less than the pore diameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrant DNA methylation is a common phenomenon in human cancer, but its patterns, causes, and consequences are poorly defined. Promoter methylation of the DNA mismatch repair gene MutL homologue (MLH1) has been implicated in the subset of colorectal cancers that shows microsatellite instability (MSI). The present analysis of four MspI/HpaII sites at the MLH1 promoter region in a series of 89 sporadic colorectal cancers revealed two main methylation patterns that closely correlated with the MSI status of the tumors. These sites were hypermethylated in tumor tissue relative to normal mucosa in most MSI(+) cases (31/51, 61%). By contrast, in the majority of MSI(−) cases (20/38, 53%) the same sites showed methylation in normal mucosa and hypomethylation in tumor tissue. Hypermethylation displayed a direct correlation with increasing age and proximal location in the bowel and was accompanied by immunohistochemically documented loss of MLH1 protein both in tumors and in normal tissue. Similar patterns of methylation were observed in the promoter region of the calcitonin gene that does not have a known functional role in tumorigenesis. We propose a model of carcinogenesis where different epigenetic phenotypes distinguish the colonic mucosa in individuals who develop MSI(+) and MSI(−) tumors. These phenotypes may underlie the different developmental pathways that are known to occur in these tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparative typing of matched tumor and blood DNAs at dinucleotide repeat (microsatellite) loci has revealed in tumor DNA the presence of alleles that are not observed in normal DNA. The occurrence of these additional alleles is possibly due to replication errors (RERs). Although this observation has led to the recognition of a subtype of colorectal cancer with a high incidence of RERs (caused by a deficiency in DNA mismatch repair), a thorough analysis of the RER frequency in a consecutive series of colorectal cancers had not been reported. It is shown here that the extensive typing of 88 colorectal tumors reveals a bimodal distribution for the frequency of RER at microsatellite loci. Within the major mode (75 tumors, RER− subtype), the probability that a locus exhibited instability did not differ significantly among loci and tumors, being 0.02. The subsequent development of a statistical test for an operational discrimination between the RER− and RER+ subtypes indicated that the probability of misclassification did not exceed 0.001 in this series. The frequency of K-ras mutation was found to be equivalent in the two subtypes. However, in the RER+ tumors, the p53 gene mutation was less frequently detected, the adenomatous polyposis coli (APC) mutation was rare, and the biallelic inactivation of either of these genes was not observed. Furthermore, the concomitant occurrence of APC and tumor growth factor β receptor type II gene alterations was found only once. These data suggest that the repertoires of genes that are frequently altered in RER+ and RER− tumors may be more different than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A remarkable instability at simple repeated sequences characterizes gastrointestinal cancer of the microsatellite mutator phenotype (MMP). Mutations in the DNA mismatch repair gene family underlie the MMP, a landmark for hereditary nonpolyposis colorectal cancer. These tumors define a distinctive pathway for carcinogenesis because they display a particular spectrum of mutated cancer genes containing target repeats for mismatch repair deficiency. One such gene is BAX, a proapoptotic member of the Bcl-2 family of proteins, which plays a key role in programmed cell death. More than half of colon and gastric cancers of the MMP contain BAX frameshifts in a (G)8 mononucleotide tract. However, the functional significance of these mutations in tumor progression has not been established. Here we show that inactivation of the wild-type BAX allele by de novo frameshift mutations confers a strong advantage during tumor clonal evolution. Tumor subclones with only mutant alleles frequently appeared after inoculation into nude mice of single-cell clones of colon tumor cell lines with normal alleles. In contrast, no clones of BAX-expressing cells were found after inoculation of homozygous cell clones without wild-type BAX. These results support the interpretation that BAX inactivation contributes to tumor progression by providing a survival advantage. In this context, survival analyses show that BAX mutations are indicators of poor prognosis for both colon and gastric cancer of the MMP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is evidence from both genetic and pharmacologic studies to suggest that the cyclooxygenase-2 (COX-2) enzyme plays a causal role in the development of colorectal cancer. However, little is known about the identity or role of the eicosanoid receptor pathways activated by COX-derived prostaglandins (PG). We previously have reported that COX-2-derived prostacyclin promotes embryo implantation in the mouse uterus via activation of the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) δ. In light of the recent finding that PPARδ is a target of β-catenin transactivation, it is important to determine whether this signaling pathway is operative during the development of colorectal cancer. Analysis of PPARδ mRNA in matched normal and tumor samples revealed that expression of PPARδ, similar to COX-2, is up-regulated in colorectal carcinomas. In situ hybridization studies demonstrate that PPARδ is expressed in normal colon and localized to the epithelial cells at the very tips of the mucosal glands. In contrast, expression of PPARδ mRNA in colorectal tumors was more widespread with increased levels in transformed epithelial cells. Analysis of PPARδ and COX-2 mRNA in serial sections suggested they were colocalized to the same region within a tumor. Finally, transient transfection assays established that endogenously synthesized prostacyclin (PGI2) could serve as a ligand for PPARδ. In addition, the stable PGI2 analog, carbaprostacyclin, and a synthetic PPARδ agonist induced transactivation of endogenous PPARδ in human colon carcinoma cells. We conclude from these observations that PPARδ, similar to COX-2, is aberrantly expressed in colorectal tumors and that endogenous PPARδ is transcriptionally responsive to PGI2. However, the functional consequence of PPARδ activation in colon carcinogenesis still needs to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The abundant chromosome abnormalities in most carcinomas are probably a reflection of genomic instability present in the tumor, so the pattern and variability of chromosome abnormalities will reflect the mechanism of instability combined with the effects of selection. Chromosome rearrangement was investigated in 17 colorectal carcinoma-derived cell lines. Comparative genomic hybridization showed that the chromosome changes were representative of those found in primary tumors. Spectral karyotyping (SKY) showed that translocations were very varied and mostly unbalanced, with no translocation occurring in more than three lines. At least three karyotype patterns could be distinguished. Some lines had few chromosome abnormalities: they all showed microsatellite instability, the replication error (RER)+ phenotype. Most lines had many chromosome abnormalities: at least seven showed a surprisingly consistent pattern, characterized by multiple unbalanced translocations and intermetaphase variation, with chromosome numbers around triploid, 6–16 structural aberrations, and similarities in gains and losses. Almost all of these were RER−, but one, LS411, was RER+. The line HCA7 showed a novel pattern, suggesting a third kind of genomic instability: multiple reciprocal translocations, with little numerical change or variability. This line was also RER+. The coexistence in one tumor of two kinds of genomic instability is to be expected if the underlying defects are selected for in tumor evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Losses of heterozygosity are the most common molecular genetic alteration observed in human cancers. However, there have been few systematic studies to understand the mechanism(s) responsible for losses of heterozygosity in such tumors. Here we report a detailed investigation of the five chromosomes lost most frequently in human colorectal cancers. A total of 10,216 determinations were made with 88 microsatellite markers, revealing 245 chromosomal loss events. The mechanisms of loss were remarkably chromosome-specific. Some chromosomes displayed complete loss such as that predicted to result from mitotic nondisjunction. However, more than half of the losses were associated with losses of only part of a chromosome rather than a whole chromosome. Surprisingly, these losses were due largely to structural alterations rather than to mitotic recombination, break-induced replication, or gene conversion, suggesting novel mechanisms for the generation of much of the aneuploidy in this common tumor type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of DCC (deleted in colorectal cancer) is often markedly reduced in colorectal and other cancers. However, the rarity of point mutations identified in DCC coding sequences and the lack of a tumor predisposition phenotype in DCC hemizygous mice have raised questions about its role as a tumor suppressor. DCC also mediates axon guidance and functions as a dependence receptor; such receptors create cellular states of dependence on their respective ligands by inducing apoptosis when unoccupied by ligand. We now show that DCC drives cell death independently of both the mitochondria-dependent pathway and the death receptor/caspase-8 pathway. Moreover, we demonstrate that DCC interacts with both caspase-3 and caspase-9 and drives the activation of caspase-3 through caspase-9 without a requirement for cytochrome c or Apaf-1. Hence, DCC defines an additional pathway for the apoptosome-independent caspase activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the influence of genetic instability [replication error (RER) phenotype] on APC (adenomatous polyposis coli), a gene thought to initiate colorectal tumorigenesis. The prevalence of APC mutations was similar in RER and non-RER tumors, indicating that both tumor types share this step in neoplastic transformation. However, in a total of 101 sequenced mutations, we noted a substantial excess of APC frameshift mutations in the RER cases (70% in RER tumors versus 47% in non-RER tumors, P < 0.04). These frameshifts were characteristic of mutations arising in cells deficient in DNA mismatch repair, with a predilection for mononucleotide repeats in the RER tumors (P < 0.0002), particularly (A)n tracts (P < 0.00007). These findings suggest that the genetic instability that is reflected by the RER phenotype precedes, and is responsible for, APC mutation in RER large bowel tumors and have important implications for understanding the very earliest stages of neoplasia in patients with tumors deficient in mismatch repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maytansinoid drug DM1 is 100- to 1000-fold more cytotoxic than anticancer drugs that are currently in clinical use. The immunoconjugate C242-DM1 was prepared by conjugating DM1 to the monoclonal antibody C242, which recognizes a mucin-type glycoprotein expressed to various extents by human colorectal cancers. C242-DM1 was found to be highly cytotoxic toward cultured colon cancer cells in an antigen-specific manner and showed remarkable antitumor efficacy in vivo. C242-DM1 cured mice bearing subcutaneous COLO 205 human colon tumor xenografts (tumor size at time of treatment 65-130 mm3), at doses that showed very little toxicity and were well below the maximum tolerated dose. C242-DM1 could even effect complete regressions or cures in animals with large (260- to 500-mm3) COLO 205 tumor xenografts. Further, C242-DM1 induced complete regressions of subcutaneous LoVo and HT-29 colon tumor xenografts that express the target antigen in a heterogeneous manner. C242-DM1 represents a new generation of immunoconjugates that may yet fulfill the promise of effective cancer therapy through antibody targeting of cytotoxic agents.