6 resultados para bacterium contamination

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Import of DNA into mammalian nuclei is generally inefficient. Therefore, one of the current challenges in human gene therapy is the development of efficient DNA delivery systems. Here we tested whether bacterial proteins could be used to target DNA to mammalian cells. Agrobacterium tumefaciens, a plant pathogen, efficiently transfers DNA as a nucleoprotein complex to plant cells. Agrobacterium-mediated T-DNA transfer to plant cells is the only known example for interkingdom DNA transfer and is widely used for plant transformation. Agrobacterium virulence proteins VirD2 and VirE2 perform important functions in this process. We reconstituted complexes consisting of the bacterial virulence proteins VirD2, VirE2, and single-stranded DNA (ssDNA) in vitro. These complexes were tested for import into HeLa cell nuclei. Import of ssDNA required both VirD2 and VirE2 proteins. A VirD2 mutant lacking its C-terminal nuclear localization signal was deficient in import of the ssDNA–protein complexes into nuclei. Import of VirD2–ssDNA–VirE2 complexes was fast and efficient, and was shown to depended on importin α, Ran, and an energy source. We report here that the bacterium-derived and plant-adapted protein–DNA complex, made in vitro, can be efficiently imported into mammalian nuclei following the classical importin-dependent nuclear import pathway. This demonstrates the potential of our approach to enhance gene transfer to animal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Like all hyperthermophiles yet tested, the bacterium Thermotoga maritima contains a reverse gyrase. Here we show that it contains also a DNA gyrase. The genes top2A and top2B encoding the two subunits of a DNA gyrase-like enzyme have been cloned and sequenced. The Top2A (type II DNA topoisomerase A protein) is more similar to GyrA (DNA gyrase A protein) than to ParC [topoisomerase IV (Topo IV) C protein]. The difference is especially striking at the C-terminal domain, which differentiates DNA gyrases from Topo IV. DNA gyrase activity was detected in T. maritima and purified to homogeneity using a novobiocin-Sepharose column. This hyperhermophilic DNA gyrase has an optimal activity around 82–86°C. In contrast to plasmids from hyperthermophilic archaea, which are from relaxed to positively supercoiled, we found that the plasmid pRQ7 from Thermotoga sp. RQ7 is negatively supercoiled. pRQ7 became positively supercoiled after addition of novobiocin to cell cultures, indicating that its negative supercoiling is due to the DNA gyrase of the host strain. The findings concerning DNA gyrase and negative supercoiling in Thermotogales put into question the role of reverse gyrase in hyperthermophiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Betaine lipids are ether-linked, nonphosphorous glycerolipids that resemble the more commonly known phosphatidylcholine in overall structure. Betaine lipids are abundant in many eukaryotes such as nonseed plants, algae, fungi, and amoeba. Some of these organisms are entirely devoid of phosphatidylcholine and, instead, contain a betaine lipid such as diacylglyceryl-O-4′-(N,N,N,-trimethyl)homoserine. Recently, this lipid also was discovered in the photosynthetic purple bacterium Rhodobacter sphaeroides where it seems to replace phosphatidylcholine under phosphate-limiting growth conditions. This discovery provided the opportunity to study the biosynthesis of betaine lipids in a bacterial model system. Mutants of R. sphaeroides deficient in the biosynthesis of the betaine lipid were isolated, and two genes essential for this process, btaA and btaB, were identified. It is proposed that btaA encodes an S-adenosylmethionine:diacylglycerol 3-amino-3-carboxypropyl transferase and btaB an S-adenosylmethionine-dependent N-methyltransferase. Both enzymatic activities can account for all reactions of betaine lipid head group biosynthesis. Because the equivalent reactions have been proposed for different eukaryotes, it seems likely that orthologs of btaA/btaB may be present in other betaine lipid-containing organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These are intriguing times in the exploration of other solar-system bodies. Continuing discoveries about life on Earth and the return of data suggesting the presence of liquid water environments on or under the surfaces of other planets and moons have combined to suggest the significant possibility that extraterrestrial life may exist in this solar system. Similarly, not since the Viking missions of the mid-1970s has there been as great an appreciation for the potential for Earth life to contaminate other worlds. Current plans for the exploration of the solar system include constraints intended to prevent biological contamination from being spread by solar-system exploration missions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To circumvent the need to engineer pathogenic microorganisms as live vaccine-delivery vehicles, a system was developed which allowed for the stable expression of a wide range of protein antigens on the surface of Gram-positive commensal bacteria. The human oral commensal Streptococcus gordonii was engineered to surface express a 204-amino acid allergen from hornet venom (Ag5.2) as a fusion with the anchor region of the M6 protein of Streptococcus pyogenes. The immunogenicity of the M6-Ag5.2 fusion protein was assessed in mice inoculated orally and intranasally with a single dose of recombinant bacteria, resulting in the colonization of the oral/pharyngeal mucosa for 10-11 weeks. A significant increase of Ag5.2-specific IgA with relation to the total IgA was detected in saliva and lung lavages when compared with mice colonized with wild-type S. gordonii. A systemic IgG response to Ag5.2 was also induced after oral colonization. Thus, recombinant Gram-positive commensal bacteria may be a safe and effective way of inducing a local and systemic immune response.