61 resultados para apolipoprotein M

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have generated mice with markedly elevated plasma levels of human low density lipoprotein (LDL) and reduced plasma levels of high density lipoprotein. These mice have no functional LDL receptors [LDLR−/−] and express a human apolipoprotein B-100 (apoB) transgene [Tg(apoB+/+)] with or without an apo(a) transgene [Tg(apoa+/−)]. Twenty animals (10 males and 10 females) of each of the following four genotypes were maintained on a chow diet: (i) LDLR−/−, (ii) LDLR−/−;Tg(apoa+/−), (iii) LDLR−/−;Tg(apoB+/+), and (iv)LDLR−/−;Tg(apoB+/+);Tg(apo+/−). The mice were killed at 6 mo, and the percent area of the aortic intimal surface that stained positive for neutral lipid was quantified. Mean percent areas of lipid staining were not significantly different between the LDLR−/− and LDLR−/−;Tg(apoa+/−) mice (1.0 ± 0.2% vs. 1.4 ± 0.3%). However, the LDLR−/−;Tg(apoB+/+) mice had ≈15-fold greater mean lesion area than the LDLR−/− mice. No significant difference was found in percent lesion area in the LDLR−/−;Tg(apoB+/+) mice whether or not they expressed apo(a) [18.5 ± 2.5%, without lipoprotein(a), Lp(a), vs. 16.0 ± 1.7%, with Lp(a)]. Histochemical analyses of the sections from the proximal aorta of LDLR−/−;Tg(apoB+/+) mice revealed large, complex, lipid-laden atherosclerotic lesions that stained intensely with human apoB-100 antibodies. In mice expressing Lp(a), large amounts of apo(a) protein colocalized with apoB-100 in the lesions. We conclude that LDLR−/−; Tg(apoB+/+) mice exhibit accelerated atherosclerosis on a chow diet and thus provide an excellent animal model in which to study atherosclerosis. We found no evidence that apo(a) increased atherosclerosis in this animal model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein E- (apoE) deficient (E−/−) mice develop severe hyperlipidemia and diffuse atherosclerosis. Low-dose expression of a human apoE3 transgene in macrophages of apoE-deficient mice (E−/−hTgE+/0), which results in about 5% of wild-type apoE plasma levels, did not correct hyperlipidemia but significantly reduced the extent of atherosclerotic lesions. To investigate the contribution of apoE to reverse cholesterol transport, we compared plasmas of wild-type (E+/+), E−/−, and E−/−hTgE+/0 mice for the appearance of apoE-containing lipoproteins by electrophoresis and their capacity to take up and esterify 3H-labeled cholesterol from radiolabeled fibroblasts or J774 macrophages. Wild-type plasma displayed lipoproteins containing apoE that were the size of high density lipoprotein and that had either electrophoretic α or γ mobilities. Similar particles were also present in E−/−hTgE+/0 plasma. Depending on incubation time, E−/− plasma released 48–74% less 3H-labeled cholesterol from fibroblasts than E+/+ plasma, whereas cholesterol efflux into E−/−hTgE+/0 plasma was only 11–25% lower than into E+/+ plasma. E−/−hTgE+/0 plasma also released 10% more 3H-labeled cholesterol from radiolabeled J774 macrophages than E−/− plasma. E+/+ and E−/−hTgE+/0 plasma each esterified significantly more cell-derived 3H-labeled cholesterol than E−/− plasma. Moreover, E−/− plasma accumulated much smaller proportions of fibroblast-derived 3H-labeled cholesterol in fractions with electrophoretic γ and α mobility than E+/+ and E−/−hTgE+/0 plasma. Thus, low-dose expression of apoE in macrophages nearly restored the cholesterol efflux capacity of apoE-deficient plasma through the formation of apoE-containing particles, which efficiently take up cell-derived cholesterol, and through the increase of cholesterol esterification activity. Thus, macrophage-derived apoE may protect against atherosclerosis by increasing cholesterol efflux from arterial wall cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs) are thought to contribute to the abnormal lipoprotein profiles and increased risk of cardiovascular disease of patients with diabetes and renal failure, in part by preventing apolipoprotein B (apoB)-mediated cellular uptake of low density lipoproteins (LDL) by LDL receptors (LDLr). It has been proposed that AGE modification at one site in apoB, almost 1,800 residues from the putative apoB LDLr-binding domain, may be sufficient to induce an apoB conformational change that prevents binding to the LDLr. To further explore this hypothesis, we used 29 anti-human apoB mAbs to identify other potential sites on apoB that may be modified by in vitro advanced glycation of LDL. Glycation of LDL caused a time-dependent decrease in its ability to bind to the LDLr and in the immunoreactivity of six distinct apoB epitopes, including two that flank the apoB LDLr-binding domain. ApoB appears to be modified at multiple sites by these criteria, as the loss of glycation-sensitive epitopes was detected on both native glycated LDL and denatured, delipidated glycated apoB. Moreover, residues directly within the putative apoB LDLr-binding site are not apparently modified in glycated LDL. We propose that the inability of LDL modified by AGEs to bind to the LDLr is caused by modification of residues adjacent to the putative LDLr-binding site that were undetected by previous immunochemical studies. AGE modification either eliminates the direct participation of the residues in LDLr binding or indirectly alters the conformation of the apoB LDLr-binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test directly whether fibrin(ogen) is a key binding site for apolipoprotein(a) [apo(a)] in vessel walls, apo(a) transgenic mice and fibrinogen knockout mice were crossed to generate fibrin(ogen)-deficient apo(a) transgenic mice and control mice. In the vessel wall of apo(a) transgenic mice, fibrin(ogen) deposition was found to be essentially colocalized with focal apo(a) deposition and fatty-streak type atherosclerotic lesions. Fibrinogen deficiency in apo(a) transgenic mice decreased the average accumulation of apo(a) in vessel walls by 78% and the average lesion (fatty streak type) development by 81%. Fibrinogen deficiency in wild-type mice did not significantly reduce lesion development. Our results suggest that fibrin(ogen) provides one of the major sites to which apo(a) binds to the vessel wall and participates in the generation of atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) is associated with several classes of plasma lipoproteins and mediates uptake of lipoproteins through its ability to interact with specific cell surface receptors. Besides its role in cardiovascular diseases, accumulating evidence has suggested that apoE could play a role in neurodegenerative diseases, such as Alzheimer disease. In vertebrates, apoA-I is the major protein of high-density lipoprotein. ApoA-I may play an important role in regulating the cholesterol content of peripheral tissues through the reverse cholesterol transport pathway. We have isolated cDNA clones that code for apoE and apoA-I from a zebrafish embryo library. Analysis of the deduced amino acid sequences showed the presence of a region enriched in basic amino acids in zebrafish apoE similar to the lipoprotein receptor-binding region of human apoE. We demonstrated by whole-mount in situ hybridization that apoE and apoA-I genes are highly expressed in the yolk syncytial layer, an extraembryonic structure implicated in embryonic and larval nutrition. ApoE transcripts were also observed in the deep cell layer during blastula stage, in numerous ectodermal derivatives after gastrulation, and after 3 days of development in a limited number of cells both in brain and in the eyes. Our data indicate that apoE can be found in a nonmammalian vertebrate and that the duplication events, from which apoE and apoA-I genes arose, occurred before the divergence of the tetrapod and teleost ancestors. Zebrafish can be used as a simple and useful model for studying the role of apolipoproteins in embryonic and larval nutrition and of apoE in brain morphogenesis and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anti-atherogenic role of high density lipoprotein is well known even though the mechanism has not been established. In this study, we have used a novel model system to test whether removal of lipoprotein cholesterol from a localized depot will be affected by apolipoprotein A-I (apo A-I) deficiency. We compared the egress of cholesterol injected in the form of cationized low density lipoprotein into the rectus femoris muscle of apo A-I K-O and control mice. When the injected lipoprotein had been labeled with [3H]cholesterol, the t½ of labeled cholesterol loss from the muscle was about 4 days in controls and more than 7 days in apo A-I K-O mice. The loss of cholesterol mass had an initial slow (about 4 days) and a later more rapid component; after day 4, the disappearance curves for apo A-I K-O and controls began to diverge, and by day 7, the loss of injected cholesterol was significantly slower in apo A-I K-O than in controls. The injected lipoprotein cholesterol is about 70% in esterified form and undergoes hydrolysis, which by day 4 was similar in control and apo A-I K-O mice. The efflux potential of serum from control and apo A-I K-O mice was studied using media containing 2% native or delipidated serum. A significantly lower efflux of [3H]cholesterol from macrophages was found with native and delipidated serum from apo A-I K-O mice. In conclusion, these findings show that lack of apo A-I results in a delay in cholesterol loss from a localized depot in vivo and from macrophages in culture. These results provide support for the thesis that anti-atherogenicity of high density lipoprotein is related in part to its role in cholesterol removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein(a) [apo(a)] is the distinguishing protein component of lipoprotein(a), a major inherited risk factor for atherosclerosis. Human apo(a) is homologous to plasminogen. It contains from 15 to 50 repeated domains closely related to plasminogen kringle four, plus single kringle five-like and inactive protease-like domains. This expressed gene is confined to a subset of primates. Although most mammals lack apo(a), hedgehogs produce an apo(a)-like protein composed of highly repeated copies of a plasminogen kringle three-like domain, with complete absence of protease domain sequences. Both human and hedgehog apo(a)-like proteins form covalently linked lipoprotein particles that can bind to fibrin and other substrates shared with plasminogen. DNA sequence comparisons and phylogenetic analysis indicate that the human type of apo(a) evolved from a duplicated plasminogen gene during recent primate evolution. In contrast, the kringle three-based type of apo(a) evolved from an independent duplication of the plasminogen gene approximately 80 million years ago. In a type of convergent evolution, the plasminogen gene has been independently remodeled twice during mammalian evolution to produce similar forms of apo(a) in two widely divergent groups of species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein B (apoB) mRNA editing catalyzed by apoB mRNA editing catalytic subunit 1 (APOBEC-1) has been proposed to be a nuclear process. To test this hypothesis, the subcellular distribution of hemagglutinin-(HA) tagged APOBEC-1 expressed in transiently transfected hepatoma cells was determined by indirect immunofluorescence microscopy. HA-APOBEC-1 was detected in both the nucleus and cytoplasm of rat and human hepatoma cells. Mutagenesis of APOBEC-1 demonstrated that the N-terminal 56 amino acids (1–56) were necessary for the nuclear distribution of APOBEC-1, but this region did not contain a functional nuclear localization signal (NLS). However, we identified a 24-amino acid domain in the C terminus of APOBEC-1 with characteristics of a cytoplasmic retention signal (CRS) or a nuclear export signal (NES). These data suggest, therefore, that the nuclear import of APOBEC-1 may not be mediated by a positive NLS; rather, it may be achieved by overcoming the effect of a CRS/NES. We also demonstrated that the nuclear distribution of APOBEC-1 occurred only in cell lines that were capable of editing apoB RNA. We propose that the cellular distribution of APOBEC-1 is determined by multiple domains within this protein, and a nuclear localization of the enzyme may be regulated by cell type-specific factors that render these cells uniquely editing competent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated whether endothelin-1 (ET-1), a potent vasoconstrictor, which also stimulates cell proliferation, contributes to endothelial dysfunction and atherosclerosis. Apolipoprotein E (apoE)-deficient mice and C57BL/6 control mice were treated with a Western-type diet to accelerate atherosclerosis with or without ETA receptor antagonist LU135252 (50 mg/kg/d) for 30 wk. Systolic blood pressure, plasma lipid profile, and plasma nitrate levels were determined. In the aorta, NO-mediated endothelium-dependent relaxation, atheroma formation, ET receptor-binding capacity, and vascular ET-1 protein content were assessed. In apoE-deficient but not C57BL/6 mice, severe atherosclerosis developed within 30 wk. Aortic ET-1 protein content (P < 0.0001) and binding capacity for ETA receptors was increased as compared with C57BL/6 mice. In contrast, NO-mediated, endothelium-dependent relaxation to acetylcholine (56 ± 3 vs. 99 ± 2%, P < 0.0001) and plasma nitrate were reduced (57.9 ± 4 vs. 93 ± 10 μmol/liter, P < 0.01). Treatment with the ETA receptor antagonist LU135252 for 30 wk had no effect on the lipid profile or systolic blood pressure in apoE-deficient mice, but increased NO-mediated endothelium-dependent relaxation (from 56 ± 3 to 93 ± 2%, P < 0.0001 vs. untreated) as well as circulating nitrate levels (from 57.9 ± 4 to 80 ± 8.3 μmol/liter, P < 0.05). Chronic ETA receptor blockade reduced elevated tissue ET-1 levels comparable with those found in C57BL/6 mice and inhibited atherosclerosis in the aorta by 31% without affecting plaque morphology or ET receptor-binding capacity. Thus, chronic ETA receptor blockade normalizes NO-mediated endothelial dysfunction and reduces atheroma formation independent of plasma cholesterol and blood pressure in a mouse model of human atherosclerosis. ETA receptor blockade may have therapeutic potential in patients with atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantified the amount of amyloid β-peptide (Aβ) immunoreactivity as well as amyloid deposits in a large cohort of transgenic mice overexpressing the V717F human amyloid precursor protein (APPV717F+/− TG mice) with no, one, or two mouse apolipoprotein E (Apoe) alleles at various ages. Remarkably, no amyloid deposits were found in any brain region of APPV717F+/− Apoe−/− TG mice as old as 22 mo of age, whereas age-matched APPV717F +/− Apoe+/− and Apoe+/+ TG mice display abundant amyloid deposition. The amount of Aβ immunoreactivity in the hippocampus was also markedly reduced in an Apoe gene dose-dependent manner (Apoe+/+ > Apoe+/− ≫ Apoe−/−), and no Aβ immunoreactivity was detected in the cerebral cortex of APPV717F+/− Apoe−/− TG mice at any of the time points examined. The absence of apolipoprotein E protein (apoE) dramatically reduced the amount of both Aβ1–40 and Aβ1–42 immunoreactive deposits as well as the resulting astrogliosis and microgliosis normally observed in APPV717F TG mice. ApoE immunoreactivity was detected in a subset of Aβ immunoreactive deposits and in virtually all thioflavine-S-fluorescent amyloid deposits. Because the absence of apoE alters neither the transcription or translation of the APPV717F transgene nor its processing to Aβ peptide(s), we postulate that apoE promotes both the deposition and fibrillization of Aβ, ultimately affecting clearance of protease-resistant Aβ/apoE aggregates. ApoE appears to play an essential role in amyloid deposition in brain, one of the neuropathological hallmarks of Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of truncated human apolipoprotein A-I (apo A-I), the major protein component of high density lipoprotein, has been determined at 4-Å resolution. The crystals comprise residues 44–243 (exon 4) of apo A-I, a fragment that binds to lipid similarly to intact apo A-I and that retains the lipid-bound conformation even in the absence of lipid. The molecule consists almost entirely of a pseudo-continuous, amphipathic α-helix that is punctuated by kinks at regularly spaced proline residues; it adopts a shape similar to a horseshoe of dimensions 125 × 80 × 40 Å. Four molecules in the asymmetric unit associate via their hydrophobic faces to form an antiparallel four-helix bundle with an elliptical ring shape. Based on this structure, we propose a model for the structure of apo A-I bound to high density lipoprotein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein (apo) A-II is the second most abundant apolipoprotein in high density lipoprotein (HDL). To study its role in lipoprotein metabolism and atherosclerosis susceptibility, apo A-II knockout mice were created. Homozygous knockout mice had 67% and 52% reductions in HDL cholesterol levels in the fasted and fed states, respectively, and HDL particle size was reduced. Metabolic turnover studies revealed the HDL decrease to be due to both decreased HDL cholesterol ester and apo A-I transport rate and increased HDL cholesterol ester and apo A-I fractional catabolic rate. The apo A-II deficiency trait was bred onto the atherosclerosis-prone apo E-deficient background, which resulted in a surprising 66% decrease in cholesterol levels due primarily to decreased atherogenic lipoprotein remnant particles. Metabolic turnover studies indicated increased remnant clearance in the absence of apo A-II. Finally, apo A-II deficiency was associated with lower free fatty acid, glucose, and insulin levels, suggesting an insulin hypersensitivity state. In summary, apo A-II plays a complex role in lipoprotein metabolism, with some antiatherogenic properties such as the maintenance of a stable HDL pool, and other proatherogenic properties such as decreasing clearance of atherogenic lipoprotein remnants and promotion of insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) mediates the redistribution of lipids among cells and is expressed at highest levels in brain and liver. Human apoE exists in three major isoforms encoded by distinct alleles (ɛ2, ɛ3, and ɛ4). Compared with APOE ɛ2 and ɛ3, APOE ɛ4 increases the risk of cognitive impairments, lowers the age of onset of Alzheimer’s disease (AD), and decreases the response to AD treatments. Besides age, inheritance of the APOE ɛ4 allele is the most important known risk factor for the development of sporadic AD, the most common form of this illness. Although numerous hypotheses have been advanced, it remains unclear how APOE ɛ4 might affect cognition and increase AD risk. To assess the effects of distinct human apoE isoforms on the brain, we have used the neuron-specific enolase (NSE) promoter to express human apoE3 or apoE4 at similar levels in neurons of transgenic mice lacking endogenous mouse apoE. Compared with NSE-apoE3 mice and wild-type controls, NSE-apoE4 mice showed impairments in learning a water maze task and in vertical exploratory behavior that increased with age and were seen primarily in females. These findings demonstrate that human apoE isoforms have differential effects on brain function in vivo and that the susceptibility to apoE4-induced deficits is critically influenced by age and gender. These results could be pertinent to cognitive impairments observed in human APOE ɛ4 carriers. NSE-apoE mice and similar models may facilitate the preclinical assessment of treatments for apoE-related cognitive deficits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized the interaction between apolipoprotein E (apoE) and amyloid β peptide (Aβ) in the soluble fraction of the cerebral cortex of Alzheimer’s disease (AD) and control subjects. Western blot analysis with specific antibodies identified in both groups a complex composed of the full-length apoE and Aβ peptides ending at residues 40 and 42. The apoE–Aβ soluble aggregate is less stable in AD brains than in controls, when treated with the anionic detergent SDS. The complex is present in significantly higher quantity in control than in AD brains, whereas in the insoluble fraction an inverse correlation has previously been reported. Moreover, in the AD subjects the Aβ bound to apoE is more sensitive to protease digestion than is the unbound Aβ. Taken together, our results indicate that in normal brains apoE efficiently binds and sequesters Aβ, preventing its aggregation. In AD, the impaired apoE–Aβ binding leads to the critical accumulation of Aβ, facilitating plaque formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remnants of triglyceride-rich lipoproteins containing apolipoprotein (apo) B-48 accumulate in apo E-deficient mice, causing pronounced hypercholesterolemia. Mice doubly deficient in apo E and hepatic lipase have more pronounced hypercholesterolemia, even though remnants do not accumulate appreciably in mice deficient in hepatic lipase alone. Here we show that the doubly deficient mice manifest a unique lamellar hyperlipoproteinemia, characterized by vesicular particles 600 Å–1,300 Å in diameter. As seen by negative-staining electron microscopy, these lipoproteins also contain an electron-lucent region adjacent to the vesicle wall, similar to the core of typical lipoproteins. Correlative chemical analysis indicates that the vesicle wall is composed of a 1:1 molar mixture of cholesterol and phospholipids, whereas the electron-lucent region appears to be composed of cholesteryl esters (about 12% of the particle mass). Like the spherical lipoproteins of doubly deficient mice, the vesicular particles contain apo B-48, but they are particularly rich in apo A-IV. We propose that cholesteryl esters are removed from spherical lipoproteins of these mice by scavenger receptor B1, leaving behind polar lipid-rich particles that fuse to form vesicular lipoproteins. Hepatic lipase may prevent such vesicular lipoproteins from accumulating in apo E-deficient mice by hydrolyzing phosphatidyl choline as scavenger receptor B1 removes the cholesteryl esters and by gradual endocytosis of lipoproteins bound to hepatic lipase on the surface of hepatocytes.