5 resultados para TP53

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ink4a/Arf locus encodes p16Ink4a and p19Arf and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19Arf and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16Ink4a and p19Arf are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19Arf but not p16 Ink4a induced apoptosis in Ab-MLV-transformed pre-B cells, p19Arf appears to be responsible for these events. Consistent with the link between p19Arf and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19Arf is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19Arf–p53 regulatory loop plays an important role in lymphoma induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nineteen benign [World Health Organization (WHO) grade I; MI], 21 atypical (WHO grade II; MII), and 19 anaplastic (WHO grade III; MIII) sporadic meningiomas were screened for chromosomal imbalances by comparative genomic hybridization (CGH). These data were supplemented by molecular genetic analyses of selected chromosomal regions and genes. With increasing malignancy grade, a marked accumulation of genomic aberrations was observed; i.e., the numbers (mean ± SEM) of total alterations detected per tumor were 2.9 ± 0.7 for MI, 9.2 ± 1.2 for MII, and 13.3 ± 1.9 for MIII. The most frequent alteration detected in MI was loss on 22q (58%). In MII, aberrations most commonly identified were losses on 1p (76%), 22q (71%), 14q (43%), 18q (43%), 10 (38%), and 6q (33%), as well as gains on 20q (48%), 12q (43%), 15q (43%), 1q (33%), 9q (33%), and 17q (33%). In MIII, most of these alterations were found at similar frequencies. However, an increase in losses on 6q (53%), 10 (68%), and 14q (63%) was observed. In addition, 32% of MIII demonstrated loss on 9p. Homozygous deletions in the CDKN2A gene at 9p21 were found in 4 of 16 MIII (25%). Highly amplified DNA sequences were mapped to 12q13–q15 by CGH in 1 MII. Southern blot analysis of this tumor revealed amplification of CDK4 and MDM2. By CGH, DNA sequences from 17q were found to be amplified in 1 MII and 8 MIII, involving 17q23 in all cases. Despite the high frequency of chromosomal aberrations in the MII and MIII investigated, none of these tumors showed mutations in exons 5–8 of the TP53 gene. On the basis of the most common aberrations identified in the various malignancy grades, a model for the genomic alterations associated with meningioma progression is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST–Z2 is able to condense 130–150 kb bacterial artificial chromosomes (BACs) into protein–DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein–BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR– cells by GST–Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST–Z2-mediated gene transfer. Because DNA condensation by GST–Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinically important mutant p53 proteins may be tumorigenic through a dominant-negative mechanism or due to a gain-of-function. Examples for both hypotheses have been described; however, it remains unclear to what extent they apply to TP53 mutations in general. Here it is shown that the mutational spectrum of dominant-negative p53 mutants selected in a novel yeast assay correlates tightly with p53 mutations in cancer. Two classes of dominant-negative mutations are described; the more dominant one affects codons that are essential for the stabilization of the DNA-binding surface of the p53 core domain and for the direct interaction of p53 with its DNA binding sites. These results predict that the vast majority of TP53 mutations leading to cancer do so in a dominant-negative fashion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The predisposition to colon cancer is multigenetically controlled in animals and probably also in humans. We have analyzed the multigenic control of susceptibility to 1,2-dimethylhydrazine-induced colon tumors in mice by using a set of 20 homozygous CcS/Dem recombinant congenic strains, each of which contains a different random subset of approximately 12.5% of genes from the susceptible strain STS/A and 87.5% of genes from the relatively resistant strain BALB/cHeA. Some CcS/Dem strains received the alleles from the susceptible strain STS/A at one or more of the multiple colon tumor susceptibility loci and are susceptible, whereas others are resistant. Linkage analysis shows that these susceptibility genes are different from the mouse homologs of the genes known to be somatically mutated in human colon cancer (KRAS2, TP53, DCC, MCC, APC, MSH2, and probably also MLH1). Different subsets of genes control tumor numbers and size. Two colon cancer susceptibility genes, Scc1 and Scc2, map to mouse chromosome 2. The Scc1 locus has been mapped to a narrow region of 2.4 centimorgans (90% confidence interval).