5 resultados para Support groups

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligonucleotides that recapitulate the acceptor stems of tRNAs are substrates for aminoacylation by many tRNA synthetases in vitro, even though these substrates are missing the anticodon trinucleotides of the genetic code. In the case of tRNAAla a single acceptor stem G⋅U base pair at position 3·70 is essential, based on experiments where the wobble pair has been replaced by alternatives such as I⋅U, G⋅C, and A⋅U, among others. These experiments led to the conclusion that the minor-groove free 2-amino group (of guanosine) of the G⋅U wobble pair is essential for charging. Moreover, alanine-inserting tRNAs (amber suppressors) that replace G⋅U with mismatches such as G⋅A and C⋅A are partially active in vivo and can support growth of an Escherichia coli tRNAAla knockout strain, leading to the hypothesis that a helix irregularity and nucleotide functionalities are important for recognition. Herein we investigate the charging in vitro of oligonucleotide and full-length tRNA substrates that contain mismatches at the position of the G⋅U pair. Although most of these substrates have undetectable activity, G⋅A and C⋅A variants retain some activity, which is, nevertheless, reduced by at least 100-fold. Thus, the in vivo assays are much less sensitive to large changes in aminoacylation kinetic efficiency of 3·70 variants than is the in vitro assay system. Although these functional data do not clarify all of the details, it is now clear that specific atomic groups are substantially more important in determining kinetic efficiency than is a helical distortion. By implication, the activity of mutant tRNAs measured in the in vivo assays appears to be more dependent on factors other than aminoacylation kinetic efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparison of malaria indicators among populations that have different genetic backgrounds and are uniformly exposed to the same parasite strains is one approach to the study of human heterogeneities in the response to the infection. We report the results of comparative surveys on three sympatric West African ethnic groups, Fulani, Mossi, and Rimaibé, living in the same conditions of hyperendemic transmission in a Sudan savanna area northeast of Ouagadougou, Burkina Faso. The Mossi and Rimaibé are Sudanese negroid populations with a long tradition of sedentary farming, while the Fulani are nomadic pastoralists, partly settled and characterized by non-negroid features of possible caucasoid origin. Parasitological, clinical, and immunological investigations showed consistent interethnic differences in Plasmodium falciparum infection rates, malaria morbidity, and prevalence and levels of antibodies to various P. falciparum antigens. The data point to a remarkably similar response to malaria in the Mossi and Rimaibé, while the Fulani are clearly less parasitized, less affected by the disease, and more responsive to all antigens tested. No difference in the use of malaria protective measures was demonstrated that could account for these findings, and sociocultural or environmental factors do not seem to be involved. Known genetic factors of resistance to malaria did not show higher frequencies in the Fulani. The differences in the immune response were not explained by the entomological observations, which indicated substantially uniform exposure to infective bites. The available data support the existence of unknown genetic factors, possibly related to humoral immune responses, determining interethnic differences in the susceptibility to malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brome mosaic virus (BMV), a member of the alphavirus-like superfamily of positive-strand RNA viruses, encodes two proteins, 1a and 2a, that interact with each other, with unidentified host proteins, and with host membranes to form the viral RNA replication complex. Yeast expressing 1a and 2a support replication and subgenomic mRNA synthesis by BMV RNA3 derivatives. Using a multistep selection and screening process, we have isolated yeast mutants in multiple complementation groups that inhibit BMV-directed gene expression. Three complementation groups, represented by mutants mab1–1, mab2–1, and mab3–1 (for maintenance of BMV functions), were selected for initial study. Each of these mutants has a single, recessive, chromosomal mutation that inhibits accumulation of positive- and negative-strand RNA3 and subgenomic mRNA. BMV-directed gene expression was inhibited when the RNA replication template was introduced by in vivo transcription from DNA or by transfection of yeast with in vitro transcripts, confirming that cytoplasmic RNA replication steps were defective. mab1–1, mab2–1, and mab3–1 slowed yeast growth to varying degrees and were temperature-sensitive, showing that the affected genes contribute to normal cell growth. In wild-type yeast, expression of the helicase-like 1a protein increased the accumulation of 2a mRNA and the polymerase-like 2a protein, revealing a new level of viral regulation. In association with their other effects, mab1–1 and mab2–1 blocked the ability of 1a to stimulate 2a mRNA and protein accumulation, whereas mab3–1 had elevated 2a protein accumulation. Together, these results show that BMV RNA replication in yeast depends on multiple host genes, some of which directly or indirectly affect the regulated expression and accumulation of 2a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolysis of short N alpha-protected peptide substrates bound to polyoxyethylene-polystyrene beads releases selectively free amino sites in the enzyme-accessible "surface" area. The substantial majority of functional sites in the "interior" of the polymeric support are not reached by the enzyme and remain uncleaved (protected). Subsequent synthesis with two classes of orthogonal protecting groups-N alpha-tert-butyloxycarbonyl (Boc) and N alpha-9-fluorenylmethyloxy-carbonyl (Fmoc)-allows generation of two structures on the same bead. The surface structure is available for receptor interactions, whereas the corresponding interior structure is used for coding. Coding structures are usually readily sequenceable peptides. This "shaving" methodology was illustrated by the preparation of a peptide-encoded model peptide combinatorial library containing 1.0 x 10(5) members at approximately 6-fold degeneracy. From this single library, good ligands were selected for three different receptors: anti-beta-endorphin anti-body, streptavidin, and thrombin, and the binding structures were deduced correctly by sequencing the coding peptides present on the same beads.