4 resultados para Stomach Neoplasms
em National Center for Biotechnology Information - NCBI
Resumo:
Many peptide hormone and neurotransmitter receptors belonging to the seven membrane-spanning G protein-coupled receptor family have been shown to transmit ligand-dependent mitogenic signals in vitro. However, the physiological roles of the mitogenic activity through G protein-coupled receptors in vivo remain to be elucidated. Here we have generated G protein-coupled cholecystokinin (CCK)-B/gastrin receptor deficient-mice by gene targeting. The homozygous mice showed a remarkable atrophy of the gastric mucosa macroscopically, even in the presence of severe hypergastrinemia. The atrophy was due to a decrease in parietal cells and chromogranin A-positive enterochromaffin-like cells expressing the H+,K(+)-ATPase and histidine decarboxylase genes, respectively. Oral administration of a proton pump inhibitor, omeprazole, which induced hypertrophy of the gastric mucosa with hypergastrinemia in wild-type littermates, did not eliminate the gastric atrophy of the homozygotes. These results clearly demonstrated that the G protein-coupled CCK-B/gastrin receptor is essential for the physiological as well as pathological proliferation of gastric mucosal cells in vivo.
Resumo:
The structural relationships between interstitial cells of Cajal (ICC), varicose nerve fibers, and smooth muscle cells in the gastrointestinal tract have led to the suggestion that ICC may be involved in or mediate enteric neurotransmission. We characterized the distribution of ICC in the murine stomach and found two distinct classes on the basis of morphology and immunoreactivity to antibodies against c-Kit receptors. ICC with multiple processes formed a network in the myenteric plexus region from corpus to pylorus. Spindle-shaped ICC were found within the circular and longitudinal muscle layers (IC-IM) throughout the stomach. The density of these cells was greatest in the proximal stomach. IC-IM ran along nerve fibers and were closely associated with nerve terminals and adjacent smooth muscle cells. IC-IM failed to develop in mice with mutations in c-kit. Therefore, we used W/W(V) mutants to test whether IC-IM mediate neural inputs in muscles of the gastric fundus. The distribution of inhibitory nerves in the stomachs of c-kit mutants was normal, but NO-dependent inhibitory neuro-regulation was greatly reduced. Smooth muscle tissues of W/W(V) mutants relaxed in response to exogenous sodium nitroprusside, but the membrane potential effects of sodium nitroprusside were attenuated. These data suggest that IC-IM play a critical serial role in NO-dependent neurotransmission: the cellular mechanism(s) responsible for transducing NO into electrical responses may be expressed in IC-IM. Loss of these cells causes loss of electrical responsiveness and greatly reduces responses to nitrergic nerve stimulation.
Resumo:
Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.