29 resultados para Salmonella
em National Center for Biotechnology Information - NCBI
Resumo:
Analysis of several Salmonella typhimurium in vivo-induced genes located in regions of atypical base composition has uncovered acquired genetic elements that cumulatively engender pathogenicity. Many of these regions are associated with mobile elements, encode predicted adhesin and invasin-like functions, and are required for full virulence. Some of these regions distinguish broad host range from host-adapted Salmonella serovars and may contribute to inherent differences in host specificity, tissue tropism, and disease manifestation. Maintenance of this archipelago of acquired sequence by selection in specific hosts reveals a fossil record of the evolution of pathogenic species.
Resumo:
Macrophages are considered to be the mediators of resistance to extra-intestinal Salmonella infections. Nevertheless, the initial cellular response to Salmonella infections consists primarily of polymorphonuclear leukocytes (PMN). To determine whether PMN serve an important function for the infected host, we made mice neutropenic with the rat mAb to RB6–8C5 and infected them i.v. with ≈103 Salmonella dublin or an isogenic derivative that lacks the virulence plasmid (LD842). We infected BALB/c mice, which have a point mutation in the macrophage-expressed gene Nramp1 that makes them susceptible to Salmonella, and BALB/c.D2 congenic mice, which have the wild-type Nramp1 gene that makes them resistant to Salmonella. Both mouse strains were resistant to LD842, and neutropenia made only the BALB/c strain susceptible to this infection. Neutropenic congenic mice, however, were susceptible only to wild-type S. dublin (plasmid+). These results show a complex interplay between plasmid-virulence genes in Salmonella, host macrophages, and PMN. Mice with normal macrophages need PMN to defend against nontyphoid Salmonella that carry a virulence plasmid but not against Salmonella without virulence plasmids. Mice with a mutant Nramp1 gene need PMN to defend against all Salmonella, even those that lack virulence plasmids. These results, plus the evidence that PMN kill Salmonella efficiently in vitro, suggest that Salmonella have adapted to grow inside macrophages where they are relatively sheltered from PMN. The adaptations that allow Salmonella to survive in macrophages do not protect them from PMN.
Resumo:
Escherichia coli and Salmonella typhimurium strains grown in Luria–Bertani medium containing glucose secrete a small soluble heat labile organic molecule that is involved in intercellular communication. The factor is not produced when the strains are grown in Luria–Bertani medium in the absence of glucose. Maximal secretion of the substance occurs in midexponential phase, and the extracellular activity is degraded as the glucose is depleted from the medium or by the onset of stationary phase. Destruction of the signaling molecule in stationary phase indicates that, in contrast to other quorum-sensing systems, quorum sensing in E. coli and S. typhimurium is critical for regulating behavior in the prestationary phase of growth. Our results further suggest that the signaling factor produced by E. coli and S. typhimurium is used to communicate both the cell density and the metabolic potential of the environment. Several laboratory and clinical strains of E. coli and S. typhimurium were screened for production of the signaling molecule, and most strains make it under conditions similar to those shown here for E. coli AB1157 and S. typhimurium LT2. However, we also show that E. coli strain DH5α does not make the soluble factor, indicating that this highly domesticated strain has lost the gene(s) or biosynthetic machinery necessary to produce the signaling substance. Implications for the involvement of quorum sensing in pathogenesis are discussed.
Resumo:
Previous studies have shown that inactivation of the MutS or MutL mismatch repair enzymes increases the efficiency of homeologous recombination between Escherichia coli and Salmonella typhimurium and between S. typhimurium and Salmonella typhi. However, even in mutants defective for mismatch repair the recombination frequencies are 102- to 103-fold less than observed during homologous recombination between a donor and recipient of the same species. In addition, the length of DNA exchanged during transduction between S. typhimurium and S. typhi is less than in transductions between strains of S. typhimurium. In homeologous transductions, mutations in the recD gene increased the frequency of transduction and the length of DNA exchanged. Furthermore, in mutS recD double mutants the frequency of homeologous recombination was nearly as high as that seen during homologous recombination. The phenotypes of the mutants indicate that the gene products of mutS and recD act independently. Because S. typhimurium and S. typhi are ≈98–99% identical at the DNA sequence level, the inhibition of recombination is probably not due to a failure of RecA to initiate strand exchange. Instead, these results suggest that mismatches act at a subsequent step, possibly by slowing the rate of branch migration. Slowing the rate of branch migration may stimulate helicase proteins to unwind rather than extend the heteroduplex and leave uncomplexed donor DNA susceptible to further degradation by RecBCD exonuclease.
Resumo:
Bacterial pathogens have evolved sophisticated mechanisms to interact with their hosts. A specialized type III protein secretion system capable of translocating bacterial proteins into host cells has emerged as a central factor in the interaction between a variety of mammalian and plant pathogenic bacteria with their hosts. Here we describe AvrA, a novel target of the centisome 63 type III protein secretion system of Salmonella enterica. AvrA shares sequence similarity with YopJ of the animal pathogen Yersinia pseudotuberculosis and AvrRxv of the plant pathogen Xanthomonas campestris pv. vesicatoria. These proteins are the first examples of putative targets of type III secretion systems in animal and plant pathogenic bacteria that share sequence similarity. They may therefore constitute a novel family of effector proteins with related functions in the cross-talk of these pathogens with their hosts.
Resumo:
Conventional wisdom holds that phase variation is a mechanism for immune evasion. However, despite fimbrial phase variation, mice previously exposed to Salmonella typhimurium are protected against a subsequent challenge. We evaluated whether lpf phase variation instead may be a mechanism to evade cross-immunity between Salmonella serotypes. Mice were immunized orally with S. typhimurium aroA mutants either that expressed the lpf operon (phase-on variant) or in which the entire lpf operon had been removed by deletion. During a subsequent challenge with virulent Salmonella enteritidis a selection against lpf phase-on variants was observed in mice previously exposed to S. typhimurium long polar fimbriae. Vaccination with S. typhimurium did not confer protection against challenge with S. enteritidis, presumably because lpf phase-off variants were able to evade cross-immunity. We propose that lpf phase variation is a mechanism to evade cross-immunity between Salmonella serotypes, thereby allowing their coexistence in a host population.
Resumo:
Several proteins secreted by enteric bacteria are thought to contribute to virulence by disturbing the signal transduction of infected cells. Here, we report that SopB, a protein secreted by Salmonella dublin, has sequence homology to mammalian inositol polyphosphate 4-phosphatases and that recombinant SopB has inositol phosphate phosphatase activity in vitro. SopB hydrolyzes phosphatidylinositol 3,4,5-trisphosphate, an inhibitor of Ca2+-dependent chloride secretion. In addition, SopB hydrolyzes inositol 1,3,4,5,6 pentakisphosphate to yield inositol 1,4,5,6-tetrakisphosphate, a signaling molecule that increases chloride secretion indirectly by antagonizing the inhibition of chloride secretion by phosphatidylinositol 3,4,5-trisphosphate [Eckmann, L., Rudolf, M. T., Ptasznik, A., Schultz, C., Jiang, T., Wolfson, N., Tsien, R., Fierer, J., Shears, S. B., Kagnoff, M. F., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14456–14460]. Mutation of a conserved cysteine that abolishes phosphatase activity of SopB results in a mutant strain, S. dublin SB c/s, with decreased ability to induce fluid secretion in infected calf intestine loops. Moreover, HeLa cells infected with S. dublin SB c/s do not accumulate high levels of inositol 1,4,5,6-tetrakisphosphate that are characteristic of wild-type S. dublin-infected cells. Therefore, SopB mediates virulence by interdicting inositol phosphate signaling pathways.
Resumo:
Several inositol-containing compounds play key roles in receptor-mediated cell signaling events. Here, we describe a function for a specific inositol polyphosphate, d-myo-inositol 1,4,5,6-tetrakisphosphate [Ins(1,4,5,6)P4], that is produced acutely in response to a receptor-independent process. Thus, infection of intestinal epithelial cells with the enteric pathogen Salmonella, but not with other invasive bacteria, induced a multifold increase in Ins(1,4,5,6)P4 levels. To define a specific function of Ins(1,4,5,6)P4, a membrane-permeant, hydrolyzable ester was used to deliver it to the intracellular compartment, where it antagonized epidermal growth factor (EGF)-induced inhibition of calcium-mediated chloride (Cl−) secretion (CaMCS) in intestinal epithelia. This EGF function is likely mediated through a phosphoinositide 3-kinase (PtdIns3K)-dependent mechanism because the EGF effects are abolished by wortmannin, and three different membrane-permeant esters of the PtdIns3K product phosphatidylinositol 3,4,5-trisphosphate mimicked the EGF effect on CaMCS. We further demonstrate that Ins(1,4,5,6)P4 antagonized EGF signaling downstream of PtdIns3K because Ins(1,4,5,6)P4 interfered with the PtdInsP3 effect on CaMCS without affecting PtdIns3K activity. Thus, elevation of Ins(1,4,5,6)P4 in Salmonella-infected epithelia may promote Cl− flux by antagonizing EGF inhibition mediated through PtdIns3K and PtdInsP3.
Resumo:
Recently, Salmonella spp. were shown to induce apoptosis in infected macrophages. The mechanism responsible for this process is unknown. In this report, we establish that the Inv-Spa type III secretion apparatus target invasin SipB is necessary and sufficient for the induction of apoptosis. Purified SipB microinjected into macrophages led to cell death. Binding studies show that SipB associates with the proapoptotic protease caspase-1. This interaction results in the activation of caspase-1, as seen in its proteolytic maturation and the processing of its substrate interleukin-1β. Caspase-1 activity is essential for the cytotoxicity. Functional inhibition of caspase-1 activity by acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone blocks macrophage cytotoxicity, and macrophages lacking caspase-1 are not susceptible to Salmonella-induced apoptosis. Taken together, the data demonstrate that SipB functions as an analog of the Shigella invasin IpaB.
Resumo:
The prgHIJK operon encodes components of the Salmonella typhimurium pathogenicity island 1 type III secretion system (TTSS). Previously, prgH and prgK were shown to be required for formation of the supramolecular type III secretion needle complex (NC) [Kubori, T., et al. (1998) Science 280, 602–605]. This work indicates that all prg operon genes are required for NC formation. PrgH multimerizes into a distinct tetrameric-shaped structure that may be an early intermediate of NC assembly and may provide the structural foundation required for PrgK oligomerization. PrgH and PrgK, in the absence of other TTSS components, oligomerize into ring-shaped structures identical in appearance and size to the base of the NC, indicating that they are likely the major inner membrane structural components required for secretion. PrgI and PrgJ cofractionate with the NC and are secreted into the culture supernatant. NC from prgI and prgJ mutants have an identical morphology to the envelope-spanning (basal body) NC components, but are missing the external needle, indicating that PrgI and PrgJ are required for full NC assembly and are likely components of the external needle. Therefore, PrgI and PrgJ are secreted through the NC basal body, composed in part of PrgH/K and InvG/H rings, to participate in assembly of the more distal components of the NC.
Resumo:
Many bacterial pathogens of plants and animals have evolved a specialized protein-secretion system termed type III to deliver bacterial proteins into host cells. These proteins stimulate or interfere with host cellular functions for the pathogen's benefit. The Salmonella typhimurium pathogenicity island 1 encodes one of these systems that mediates this bacterium's ability to enter nonphagocytic cells. Several components of this type III secretion system are organized in a supramolecular structure termed the needle complex. This structure is made of discrete substructures including a base that spans both membranes and a needle-like projection that extends outward from the bacterial surface. We demonstrate here that the type III secretion export apparatus is required for the assembly of the needle substructure but is dispensable for the assembly of the base. We show that the length of the needle segment is determined by the type III secretion associated protein InvJ. We report that InvG, PrgH, and PrgK constitute the base and that PrgI is the main component of the needle of the type III secretion complex. PrgI homologs are present in type III secretion systems from bacteria pathogenic for animals but are absent from bacteria pathogenic for plants. We hypothesize that the needle component may establish the specificity of type III secretion systems in delivering proteins into either plant or animal cells.
Resumo:
Superoxide dismutase (SOD) catalyzes the conversion of superoxide radical to hydrogen peroxide. Periplasmic localization of bacterial Cu,Zn-SOD has suggested a role of this enzyme in defense against extracellular phagocyte-derived reactive oxygen species. Sequence analysis of regions flanking the Salmonella typhimurium sodC gene encoding Cu,Zn-SOD demonstrates significant homology to λ phage proteins, reflecting possible bacteriophage-mediated horizontal gene transfer of this determinant among pathogenic bacteria. Salmonella deficient in Cu,Zn-SOD has reduced survival in macrophages and attenuated virulence in mice, which can be restored by abrogation of either the phagocyte respiratory burst or inducible nitric oxide synthase. Moreover, a sodC mutant is extremely susceptible to the combination of superoxide and nitric oxide. These observations suggest that SOD protects periplasmic or inner membrane targets by diverting superoxide and limiting peroxynitrite formation, and they demonstrate the ability of the respiratory burst and nitric oxide synthase to synergistically kill microbial pathogens in vivo.
Resumo:
Tumor necrosis factor receptor (TNFR) p55-knockout (KO) mice are susceptible profoundly to Salmonella infection. One day after peritoneal inoculation, TNFR-KO mice harbor 1,000-fold more bacteria in liver and spleen than wild-type mice despite the formation of well organized granulomas. Macrophages from TNFR-KO mice produce abundant quantities of reactive oxygen and nitrogen species in response to Salmonella but nevertheless exhibit poor bactericidal activity. Treatment with IFN-γ enhances killing by wild-type macrophages but does not restore the killing defect of TNFR-KO cells. Bactericidal activity of macrophages can be abrogated by a deletion in the gene encoding TNFα but not by saturating concentrations of TNF-soluble receptor, suggesting that intracellular TNFα can regulate killing of Salmonella by macrophages. Peritoneal macrophages from TNFR-KO mice fail to localize NADPH oxidase-containing vesicles to Salmonella-containing vacuoles. A TNFR-KO mutation substantially restores virulence to an attenuated mutant bacterial strain lacking the type III secretory system encoded by Salmonella pathogenicity island 2 (SPI2), suggesting that TNFα and SPI2 have opposing actions on a common pathway of vesicular trafficking. TNFα–TNFRp55 signaling plays a critical role in the immediate innate immune response to an intracellular pathogen by optimizing the delivery of toxic reactive oxygen species to the phagosome.
Resumo:
Programmed cell death (PCD) in mammals has been implicated in several disease states including cancer, autoimmune disease, and neurodegenerative disease. In Caenorhabditis elegans, PCD is a normal component of development. We find that Salmonella typhimurium colonization of the C. elegans intestine leads to an increased level of cell death in the worm gonad. S. typhimurium-mediated germ-line cell death is not observed in C. elegans ced-3 and ced-4 mutants in which developmentally regulated cell death is blocked, and ced-3 and ced-4 mutants are hypersensitive to S. typhimurium-mediated killing. These results suggest that PCD may be involved in the C. elegans defense response to pathogen attack.
Resumo:
Bacterial pathogens manipulate host cells to promote pathogen survival and dissemination. We used a 22,571 human cDNA microarray to identify host pathways that are affected by the Salmonella enterica subspecies typhimurium phoP gene, a transcription factor required for virulence, by comparing the expression profiles of human monocytic tissue culture cells infected with either the wild-type bacteria or a phoP∷Tn10 mutant strain. Both wild-type and phoP∷Tn10 bacteria induced a common set of genes, many of which are proinflammatory. Differentially expressed genes included those that affect host cell death, suggesting that the phoP regulatory system controls bacterial genes that alter macrophage survival. Subsequent experiments showed that the phoP∷Tn10 mutant strain is defective for killing both cultured and primary human macrophages but is able to replicate intracellularly. These experiments indicate that phoP plays a role in Salmonella-induced human macrophage cell death.