3 resultados para Points Weihe

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of interferon-γ in autoimmune diabetes was assessed by breeding a null mutation of the interferon-γ receptor α chain into the nonobese diabetic mouse strain, as well as into a simplified T cell receptor transgenic model of diabetes. In contrast to a previous report on abrogation of the interferon-γ gene, mutation of the gene encoding its receptor led to drastic effects on disease in both mouse lines. Nonobese diabetic mice showed a marked inhibition of insulitis—both the kinetics and penetrance—and no signs of diabetes; the transgenic model exhibited near-normal insulitis, but this never evolved into diabetes, either spontaneously or after experimental provocation. This failure could not be explained by perturbations in the ratio of T helper cell phenotypes; rather, it reflected a defect in antigen-presenting cells or in the islet β cell targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Xenopus egg extracts, DNA strand breaks (nicks) located 3' or 5' to a mismatch cause an overall 3-fold stimulation of the repair of the mismatch in circular heteroduplex DNA molecules. The increase in mismatch repair is almost entirely due to an increase in repair of the nicked strand, which is stimulated 5-fold. Repair synthesis is centered to the mismatch site, decreases symmetrically on both sides, and its position is not significantly altered by the presence of the nick. Therefore, it appears that in the Xenopus germ cells, the mismatch repair system utilizes nicks as signals for the induction and direction of mismatch repair, but not as the start or end point for excision and resynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The O2 and CO2 compensation points (O2 and CO2) of plants in a closed system depend on the ratio of CO2 and O2 concentrations in air and in the chloroplast and the specificities of ribulose bisphosphate carboxylase/oxygenase (Rubisco). The photosynthetic O2 is defined as the atmospheric O2 level, with a given CO2 level and temperature, at which net O2 exchange is zero. In experiments with C3 plants, the O2 with 220 ppm CO2 is 23% O2; O2 increases to 27% with 350 ppm CO2 and to 35% O2 with 700 ppm CO2. At O2 levels below the O2, CO2 uptake and reduction are accompanied by net O2 evolution. At O2 levels above the O2, net O2 uptake occurs with a reduced rate of CO2 fixation, more carbohydrates are oxidized by photorespiration to products of the C2 oxidative photosynthetic carbon cycle, and plants senesce prematurely. The CO2 increases from 50 ppm CO2 with 21% O2 to 220 ppm with 100% O2. At a low CO2/high O2 ratio that inhibits the carboxylase activity of Rubisco, much malate accumulates, which suggests that the oxygen-insensitive phosphoenolpyruvate carboxylase becomes a significant component of the lower CO2 fixation rate. Because of low global levels of CO2 and a Rubisco specificity that favors the carboxylase activity, relatively rapid changes in the atmospheric CO2 level should control the permissive O2 that could lead to slow changes in the immense O2 pool.