25 resultados para Non–small-cell lung cancer

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine how patients with lung cancer value the trade off between the survival benefit of chemotherapy and its toxicities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semaphorins and collapsins make up a family of conserved genes that encode nerve growth cone guidance signals. We have identified two additional members of the human semaphorin family [human semaphorin A(V) and human semaphorin IV] in chromosome region 3p21.3, where several small cell lung cancer (SCLC) cell lines exhibit homozygous deletions indicative of a tumor suppressor gene. Human semaphorin A(V) has 86% amino acid homology with murine semaphorin A, whereas semaphorin IV is most closely related to murine semaphorin E, with 50% homology. These semaphorin genes are approximately 70 kb apart flanking two GTP-binding protein genes, GNAI-2 and GNAT-1. In contrast, other human semaphorin gene sequences (human semaphorin III and homologues of murine semaphorins B and C) are not located on chromosome 3. Human semaphorin A(V) is translated in vitro into a 90-kDa protein, which accumulates at the endoplasmic reticulum. The human semaphorin A(V) (3.4-kb mRNA) and IV (3.9- and 2.9-kb mRNAs) genes are expressed abundantly but differentially in a variety of human neural and nonneural tissues. Human semaphorin A(V) was expressed in only 1 out of 23 SCLCs and 7 out of 16 non-SCLCs, whereas semaphorin IV was expressed in 19 out of 23 SCLCs and 13 out of 16 non-SCLCs. Mutational analysis in semaphorin A(V) revealed mutations (germ line in one case) in 3 of 40 lung cancers. Our data suggest the need to determine the function of human semaphorins A(V) and IV in nonneural tissues and their role in the pathogenesis of lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The achaete-scute genes encode essential transcription factors in normal Drosophila and vertebrate nervous system development. Human achaete-scute homolog-1 (hASH1) is constitutively expressed in a human lung cancer with neuroendocrine (NE) features, small cell lung cancer (SCLC), and is essential for development of the normal pulmonary NE cells that most resemble this neoplasm. Mechanisms regulating achaete-scute homolog expression outside of Drosophila are presently unclear, either in the context of the developing nervous system or in normal or neoplastic cells with NE features. We now provide evidence that the protein hairy-enhancer-of-split-1 (HES-1) acts in a similar manner as its Drosophila homolog, hairy, to transcriptionally repress achaete-scute expression. HES-1 protein is detected at abundant levels in most non-NE human lung cancer cell lines which lack hASH1 but is virtually absent in hASH1-expressing lung cancer cells. Moreover, induction of HES-1 in a SCLC cell line down-regulates endogenous hASH1 gene expression. The repressive effect of HES-1 is directly mediated by binding of the protein to a class C site in the hASH1 promoter. Thus, a key part of the process that determines neural fate in Drosophila is conserved in human lung cancer cells. Furthermore, modulation of this pathway may underlie the constitutive hASH1 expression seen in NE tumors such as SCLC, the most virulent human lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between increased DNA-methyltransferase (DNA-MTase) activity and tumor development suggest a fundamental role for this enzyme in the initiation and progression of cancer. A true functional role for DNA-MTase in the neoplastic process would be further substantiated if the target cells affected by the initiating carcinogen exhibit changes in enzyme activity. This hypothesis was addressed by examining DNA-MTase activity in alveolar type II (target) and Clara (nontarget) cells from A/J and C3H mice that exhibit high and low susceptibility, respectively, for lung tumor formation. Increased DNA-MTase activity was found only in the target alveolar type II cells of the susceptible A/J mouse and caused a marked increase in overall DNA methylation in these cells. Both DNA-MTase and DNA methylation changes were detected 7 days after carcinogen exposure and, thus, were early events in neoplastic evolution. Increased gene expression was also detected by RNA in situ hybridization in hypertrophic alveolar type II cells of carcinogen-treated A/J mice, indicating that elevated levels of expression may be a biomarker for premalignancy. Enzyme activity increased incrementally during lung cancer progression and coincided with increased expression of the DNA-MTase activity are strongly associated with neoplastic development and constitute a key step in carcinogenesis. The detection of premalignant lung disease through increased DNA-MTase expression and the possibility of blocking the deleterious effects of this change with specific inhibitors will offer new intervention strategies for lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various cancers in vivo. This effect is thought to be exerted through suppression of the pituitary growth hormone–hepatic insulin-like growth factor I (IGF-I) axis and direct inhibition of autocrine/paracrine production of IGF-I and -II in tumors. However, other evidence points to a direct effect of GHRH antagonists on tumor growth that may not implicate IGFs, although an involvement of GHRH in the proliferation of cancer cells has not yet been established. In the present study we investigated whether GHRH can function as an autocrine/paracrine growth factor in small cell lung carcinoma (SCLC). H-69 and H-510A SCLC lines cultured in vitro express mRNA for GHRH, which apparently is translated into peptide GHRH and then secreted by the cells, as shown by the detection of GHRH-like immunoreactivity in conditioned media from the cells cultured in vitro. In addition, the levels of GHRH-like immunoreactivity in serum from nude mice bearing H-69 xenografts were higher than in tumor-free mice. GHRH(1–29)NH2 stimulated the proliferation of H-69 and H-510A SCLCs in vitro, and GHRH antagonist JV-1–36 inhibited it. JV-1–36 administered s.c. into nude mice bearing xenografts of H-69 SCLC reduced significantly (P < 0.05) tumor volume and weight, after 31 days of therapy, as compared with controls. Collectively, our results suggest that GHRH can function as an autocrine growth factor in SCLCs. Treatment with antagonistic analogs of GHRH may offer a new approach to the treatment of SCLC and other cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Members of the Snail family of zinc finger transcription factors are known to play critical roles in neurogenesis in invertebrates, but none of these factors has been linked to vertebrate neuronal differentiation. We report the isolation of a gene encoding a mammalian Snail family member that is restricted to the nervous system. Human and murine Scratch (Scrt) share 81% and 69% identity to Drosophila Scrt and the Caenorhabditis elegans neuronal antiapoptotic protein, CES-1, respectively, across the five zinc finger domain. Expression of mammalian Scrt is predominantly confined to the brain and spinal cord, appearing in newly differentiating, postmitotic neurons and persisting into postnatal life. Additional expression is seen in the retina and, significantly, in neuroendocrine (NE) cells of the lung. In a parallel fashion, we detect hScrt expression in lung cancers with NE features, especially small cell lung cancer. hScrt shares the capacity of other Snail family members to bind to E-box enhancer motifs, which are targets of basic helix–loop–helix (bHLH) transcription factors. We show that hScrt directly antagonizes the function of heterodimers of the proneural bHLH protein achaete-scute homolog-1 and E12, leading to active transcriptional repression at E-box motifs. Thus, Scrt has the potential to function in newly differentiating, postmitotic neurons and in cancers with NE features by modulating the action of bHLH transcription factors critical for neuronal differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have attempted to model human metastatic disease by implanting human target organs into the immunodeficient C.B-17 scid/scid (severe combined immunodeficiency; SCID) mouse, creating SCID-hu mice. Preferential metastasis to implants of human fetal lung and human fetal bone marrow occurred after i.v. injection of human small cell lung cancer (SCLC) cells into SCID-hu mice; the homologous mouse organs were spared. Clinically more aggressive variant SCLC cells metastasized more efficiently to human fetal lung implants than did cells from classic SCLC. Metastasis of variant SCLC to human fetal bone marrow was enhanced in SCID-hu mice exposed to gamma-irradiation or to interleukin 1 alpha. These data indicate that the SCID-hu mice may provide a model in which to study species- and tissue-specific steps of the human metastatic process.