2 resultados para NITROGEN STORAGE
em National Center for Biotechnology Information - NCBI
Resumo:
Members of the lipoxygenase multigene family, found widely in eukaryotes, have been proposed to function in nitrogen partitioning and storage in plants. Lipoxygenase gene responses to source-sink manipulations in mature soybean (Glycine max [L.] Merr.) leaves were examined using gene-specific riboprobes to the five vegetative lipoxygenases (vlxA–vlxE). Steady-state levels of all vlx mRNAs responded strongly to sink limitation, but specific transcripts exhibited differential patterns of response as well. During reproductive sink limitation, vlxA and vlxB messages accumulated to high levels, whereas vlxC and vlxD transcript levels were modest. Immunolocalization using peptide-specific antibodies demonstrated that under control conditions, VLXB was present in the cytosol of the paraveinal mesophyll and with pod removal accumulated additionally in the bundle-sheath and adjacent cells. With sink limitation VLXD accumulated to apparent high levels in the vacuoles of the same cells. Segregation of gene products at the cellular and subcellular levels may thus permit complex patterns of differential regulation within the same cell type. Specific lipoxygenase isoforms may have a role in short-term nitrogen storage (VLXC/D), whereas others may simultaneously function in assimilate partitioning as active enzymes (VLXA/B).
Resumo:
Prochlorococcus marinus CCMP 1375, a ubiquitous and ecologically important marine prochlorophyte, was bound to possess functional genes coding for the alpha and beta subunits of a phycobiliprotein. The latter is similar to phycoerythrins (PE) from marine Synechococcus cyanobacteria and bind a phycourobilin-like pigment as the major chromophore. However, differences in the sequences of the alpha and beta chains compared with known PE subunits and the presence of a single bilin attachment site on the alpha subunit designate it as a novel PE type, which we propose naming PE-III. P. marinus is the sole prokaryotic organisms known so far that contains chlorophylls a and b as well as phycobilins. These data strongly suggest that the common ancestor of prochlorophytes and the Synechococcus cyanobacteria contained phycobilins. Flow cytometric data from the tropical Pacific Ocean provide evidence that deep populations of Prochlorococcus possess low amounts of a PE-like pigment, which could serve either in light harvesting or nitrogen storage or both.