22 resultados para NEURONAL SURVIVAL

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanisms responsible for cytokine-mediated antiviral effects are not fully understood. We approached this problem by studying the outcome of intraocular herpes simplex (HSV) infection in transgenic mice that express interferon gamma in the photoreceptor cells of the retina. These transgenic mice showed selective survival from lethal HSV-2 infection manifested in both eyes, the optic nerve, and the brain. Although transgenic mice developed greater inflammatory responses to the virus in the eyes, inflammation and viral titers in their brains were equivalent to nontransgenic mice. However, survival of transgenic mice correlated with markedly lower numbers of central neurons undergoing apoptosis. The protooncogene Bcl2 was found to be induced in the HSV-2-infected brains of transgenic mice, allowing us to speculate on its role in fostering neuronal survival in this model. These observations imply a complex interaction between cytokine, virus, and host cellular factors. Our results suggest a cytokine-regulated salvage pathway that allows for survival of infected neurons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The high vocal center (HVC) controls song production in songbirds and sends a projection to the robust nucleus of the archistriatum (RA) of the descending vocal pathway. HVC receives new neurons in adulthood. Most of the new neurons project to RA and replace other neurons of the same kind. We show here that singing enhances mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the HVC of adult male canaries, Serinus canaria. The increased BDNF expression is proportional to the number of songs produced per unit time. Singing-induced BDNF expression in HVC occurs mainly in the RA-projecting neurons. Neuronal survival was compared among birds that did or did not sing during days 31–38 after BrdUrd injection. Survival of new HVC neurons is greater in the singing birds than in the nonsinging birds. A positive causal link between pathway use, neurotrophin expression, and new neuron survival may be common among systems that recruit new neurons in adulthood.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inactivation of glycogen synthase kinase-3β (GSK3β) by S9 phosphorylation is implicated in mechanisms of neuronal survival. Phosphorylation of a distinct site, Y216, on GSK3β is necessary for its activity; however, whether this site can be regulated in cells is unknown. Therefore we examined the regulation of Y216 phosphorylation on GSK3β in models of neurodegeneration. Nerve growth factor withdrawal from differentiated PC12 cells and staurosporine treatment of SH-SY5Y cells led to increased phosphorylation at Y216, GSK3β activity, and cell death. Lithium and insulin, agents that lead to inhibition of GSK3β and adenoviral-mediated transduction of dominant negative GSK3β constructs, prevented cell death by the proapoptotic stimuli. Inhibitors induced S9 phosphorylation and inactivation of GSK3β but did not affect Y216 phosphorylation, suggesting that S9 phosphorylation is sufficient to override GSK3β activation by Y216 phosphorylation. Under the conditions examined, increased Y216 phosphorylation on GSK3β was not an autophosphorylation response. In resting cells, Y216 phosphorylation was restricted to GSK3β present at focal adhesion sites. However, after staurosporine, a dramatic alteration in the immunolocalization pattern was observed, and Y216-phosphorylated GSK3β selectively increased within the nucleus. In rats, Y216 phosphorylation was increased in degenerating cortical neurons induced by ischemia. Taken together, these results suggest that Y216 phosphorylation of GSK3β represents an important mechanism by which cellular insults can lead to neuronal death.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Erythropoietin (EPO) promotes neuronal survival after hypoxia and other metabolic insults by largely unknown mechanisms. Apoptosis and necrosis have been proposed as mechanisms of cellular demise, and either could be the target of actions of EPO. This study evaluates whether antiapoptotic mechanisms can account for the neuroprotective actions of EPO. Systemic administration of EPO (5,000 units/kg of body weight, i.p.) after middle-cerebral artery occlusion in rats dramatically reduces the volume of infarction 24 h later, in concert with an almost complete reduction in the number of terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling of neurons within the ischemic penumbra. In both pure and mixed neuronal cultures, EPO (0.1–10 units/ml) also inhibits apoptosis induced by serum deprivation or kainic acid exposure. Protection requires pretreatment, consistent with the induction of a gene expression program, and is sustained for 3 days without the continued presence of EPO. EPO (0.3 units/ml) also protects hippocampal neurons against hypoxia-induced neuronal death through activation of extracellular signal-regulated kinases and protein kinase Akt-1/protein kinase B. The action of EPO is not limited to directly promoting cell survival, as EPO is trophic but not mitogenic in cultured neuronal cells. These data suggest that inhibition of neuronal apoptosis underlies short latency protective effects of EPO after cerebral ischemia and other brain injuries. The neurotrophic actions suggest there may be longer-latency effects as well. Evaluation of EPO, a compound established as clinically safe, as neuroprotective therapy in acute brain injury is further supported.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies have implicated the bcl-2 protooncogene as a potential regulator of neuronal survival. However, mice lacking functional bcl-2 exhibited normal development and maintenance of the central nervous system (CNS). Since bcl-2 appears dispensable for neuronal survival, we have examined the expression and function of bcl-x, another member of the bcl-2 family of death regulatory genes. Bcl-2 is expressed in neuronal tissues during embryonic development but is down-regulated in the adult CNS. In contrast, Bcl-xL expression is retained in neurons of the adult CNS. Two different forms of bcl-x mRNA and their corresponding products, Bcl-xL and Bcl-x beta, were expressed in embryonic and adult neurons of the CNS. Microinjection of bcl-xL and bcl-x beta cDNAs into primary sympathetic neurons inhibited their death induced by nerve growth factor withdrawal. Thus, Bcl-x proteins appear to play an important role in the regulation of neuronal survival in the adult CNS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The understanding of the molecular mechanisms leading to peptide action entails the identification of a core active site. The major 28-aa neuropeptide, vasoactive intestinal peptide (VIP), provides neuroprotection. A lipophilic derivative with a stearyl moiety at the N-terminal and norleucine residue replacing the Met-17 was 100-fold more potent than VIP in promoting neuronal survival, acting at femtomolar–picomolar concentration. To identify the active site in VIP, over 50 related fragments containing an N-terminal stearic acid attachment and an amidated C terminus were designed, synthesized, and tested for neuroprotective properties. Stearyl-Lys-Lys-Tyr-Leu-NH2 (derived from the C terminus of VIP and the related peptide, pituitary adenylate cyclase activating peptide) captured the neurotrophic effects offered by the entire 28-aa parent lipophilic derivative and protected against β-amyloid toxicity in vitro. Furthermore, the 4-aa lipophilic peptide recognized VIP-binding sites and enhanced choline acetyltransferase activity as well as cognitive functions in Alzheimer’s disease-related in vivo models. Biodistribution studies following intranasal administration of radiolabeled peptide demonstrated intact peptide in the brain 30 min after administration. Thus, lipophilic peptide fragments offer bioavailability and stability, providing lead compounds for drug design against neurodegenerative diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Erythropoietin (EPO) produced by the kidney and the liver (in fetuses) stimulates erythropoiesis. In the central nervous system, neurons express EPO receptor (EPOR) and astrocytes produce EPO. EPO has been shown to protect primary cultured neurons from N-methyl-d-aspartate (NMDA) receptor-mediated glutamate toxicity. Here we report in vivo evidence that EPO protects neurons against ischemia-induced cell death. Infusion of EPO into the lateral ventricles of gerbils prevented ischemia-induced learning disability and rescued hippocampal CA1 neurons from lethal ischemic damage. The neuroprotective action of exogenous EPO was also confirmed by counting synapses in the hippocampal CA1 region. Infusion of soluble EPOR (an extracellular domain capable of binding with the ligand) into animals given a mild ischemic treatment that did not produce neuronal damage, caused neuronal degeneration and impaired learning ability, whereas infusion of the heat-denatured soluble EPOR was not detrimental, demonstrating that the endogenous brain EPO is crucial for neuronal survival. The presence of EPO in neuron cultures did not repress a NMDA receptor-mediated increase in intracellular Ca2+, but rescued the neurons from NO-induced death. Taken together EPO may exert its neuroprotective effect by reducing the NO-mediated formation of free radicals or antagonizing their toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attempts to rescue retinal ganglion cells from retrograde degeneration have had limited success, and the residual function of surviving neurons is not known. Recently, it has been found that axotomized retinal ganglion cells die by apoptotic mechanisms. We have used adult transgenic mice overexpressing the Bcl-2 protein, a powerful inhibitor of apoptosis, as a model for preventing injury-induced cell death in vivo. Several months after axotomy, the majority of retinal ganglion cells survived and exhibited normal visual responses. In control wild-type mice, the vast majority of axotomized retinal ganglion cells degenerated, and the physiological responses were abolished. These results suggest that strategies aimed at increasing Bcl-2 expression, or mimicking its function, might effectively counteract trauma-induced cell death in the central nervous system. Neuronal survival is a necessary condition in the challenge for promoting regeneration and eventually restoring neuronal function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inducible isoform of the enzyme cyclooxygenase-2 (COX2) is an immediate early gene induced by synaptic activity in the brain. COX2 activity is an important mediator of inflammation, but it is not known whether COX2 activity is pathogenic in brain. To study the role of COX2 activity in ischemic injury in brain, expression of COX2 mRNA and protein and the effect of treatment with a COX2 inhibitor on neuronal survival in a rat model of global ischemia were determined. Expression of both COX2 mRNA and protein was increased after ischemia in CA1 hippocampal neurons before their death. There was increased survival of CA1 neurons in rats treated with the COX2-selective inhibitor SC58125 {1-[(4-methylsulfonyl) phenyl]-3-trifluoro-methyl-5-[(4-fluoro)phenyl] pyrazole} before or after global ischemia compared with vehicle controls. Furthermore, hippocampal prostaglandin E2 concentrations 24 h after global ischemia were decreased in drug-treated animals compared with vehicle-treated controls. These results suggest that COX2 activity contributes to CA1 neuronal death after global ischemia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estrogen receptor β (ERβ) is expressed at high levels in both neurons and glial cells of the central nervous system. The development of ERβ knockout (BERKO) mice has provided a model to study the function of this nuclear receptor in the brain. We have found that the brains of BERKO mice show several morphological abnormalities. There is a regional neuronal hypocellularity in the brain, with a severe neuronal deficit in the somatosensory cortex, especially layers II, III, IV, and V, and a remarkable proliferation of astroglial cells in the limbic system but not in the cortex. These abnormalities are evident as early as 2 mo of age in BERKO mice. As BERKO mice age, the neuronal deficit becomes more pronounced, and, by 2 yr of age, there is degeneration of neuronal cell bodies throughout the brain. This is particularly evident in the substantia nigra. We conclude that ERβ is necessary for neuronal survival and speculate that this gene could have an important influence on the development of degenerative diseases of the central nervous system, such as Alzheimer's disease and Parkinson's disease, as well as those resulting from trauma and stroke in the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amphibian metamorphosis involves extensive, but selective, neuronal death and turnover, thus sharing many features with mammalian postnatal development. The antiapoptotic protein Bcl-XL plays an important role in postnatal mammalian neuronal survival. It is therefore of interest that accumulation of the mRNA encoding the Xenopus Bcl-XL homologue, termed xR11, increases abruptly in the nervous system, but not in other tissues, during metamorphosis in Xenopus tadpoles. This observation raises the intriguing possibility that xR11 selectively regulates neuronal survival during postembryonic development. To investigate this hypothesis, we overexpressed xR11 in vivo as a green fluorescent protein (GFP)-xR11 fusion protein by using somatic and germinal transgenesis. Somatic gene transfer showed that the fusion protein was effective in counteracting, in a dose-dependent manner, the proapoptotic effects of coexpressed Bax. When GFP-xR11 was expressed from the neuronal β-tubulin promoter by germinal transgenesis we observed neuronal specific expression that was maintained throughout metamorphosis and beyond, into juvenile and adult stages. Confocal microscopy showed GFP-xR11 to be exclusively localized in the mitochondria. Our findings show that GFP-xR11 significantly prolonged Rohon-Beard neuron survival up to the climax of metamorphosis, even in the regressing tadpole tail, whereas in controls these neurons disappeared in early metamorphosis. However, GFP-xR11 expression did not modify the fate of spinal cord motoneurons. The selective protection of Rohon-Beard neurons reveals cell-specific apoptotic pathways and offers approaches to further analyze programmed neuronal turnover during postembryonic development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although neurotrophins are primarily associated with long-term effects on neuronal survival and differentiation, recent studies have shown that acute changes in synaptic transmission can also be produced. In the hippocampus, an area critically involved in learning and memory, we have found that brain-derived neurotrophic factor (BDNF) rapidly enhanced synaptic efficacy through a previously unreported mechanism--increased postsynaptic responsiveness via a phosphorylation-dependent pathway. Within minutes of BDNF application to cultured hippocampal neurons, spontaneous firing rate was dramatically increased, as were the frequency and amplitude of excitatory postsynaptic currents. The increased frequency of postsynaptic currents resulted from the change in presynaptic firing. However, the increased amplitude was postsynaptic in origin because it was selectively blocked by intracellular injection of the tyrosine kinase receptor (Ntrk2/TrkB) inhibitor K-252a and potentiated by injection of the phosphatase inhibitor okadaic acid. These results suggest a role for BDNF in the modulation of synaptic transmission in the hippocampus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dentate gyrus of the hippocampus is one of the few areas of the adult brain that undergoes neurogenesis. In the present study, cells capable of proliferation and neurogenesis were isolated and cultured from the adult rat hippocampus. In defined medium containing basic fibroblast growth factor (FGF-2), cells can survive, proliferate, and express neuronal and glial markers. Cells have been maintained in culture for 1 year through multiple passages. These cultured adult cells were labeled in vitro with bromodeoxyuridine and adenovirus expressing beta-galactosidase and were transplanted to the adult rat hippocampus. Surviving cells were evident through 3 months postimplantation with no evidence of tumor formation. Within 2 months postgrafting, labeled cells were found in the dentate gyrus, where they differentiated into neurons only in the intact region of the granule cell layer. Our results indicate that FGF-2 responsive progenitors can be isolated from the adult hippocampus and that these cells retain the capacity to generate mature neurons when grafted into the adult rat brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Alzheimer disease (AD), neurons are thought to be subjected to the deleterious cytotoxic effects of activated microglia. We demonstrate that binding of amyloid-beta peptide (Aβ) to neuronal Receptor for Advanced Glycation Endproduct (RAGE), a cell surface receptor for Aβ, induces macrophage-colony stimulating factor (M-CSF) by an oxidant sensitive, nuclear factor κB-dependent pathway. AD brain shows increased neuronal expression of M-CSF in proximity to Aβ deposits, and in cerebrospinal fluid from AD patients there was ≈5-fold increased M-CSF antigen (P < 0.01), compared with age-matched controls. M-CSF released by Aβ-stimulated neurons interacts with its cognate receptor, c-fms, on microglia, thereby triggering chemotaxis, cell proliferation, increased expression of the macrophage scavenger receptor and apolipoprotein E, and enhanced survival of microglia exposed to Aβ, consistent with pathologic findings in AD. These data delineate an inflammatory pathway triggered by engagement of Aβ on neuronal RAGE. We suggest that M-CSF, thus generated, contributes to the pathogenesis of AD, and that M-CSF in cerebrospinal fluid might provide a means for monitoring neuronal perturbation at an early stage in AD.