31 resultados para Mouse strains

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of fertility drugs has continued to grow since their introduction in the 1960s. Accompanying this increase has been the speculation that repetitive use of these drugs can cause ovarian tumors or cancer. We recently reported that transgenic mice with chronically elevated luteinizing hormone (LH), an analog of which is commonly used in fertility regimens, develop granulosa cell (GC) tumors. In this report we show that LH induction of these tumors is highly dependent on genetic background. In CF-1 mice, chronically elevated LH invariably causes GC tumors by 5 months of age. However, in hybrid mice generated by crossing CF-1 males with C57BL/6, SJL, or CD-1 females, elevated levels of this same hormone cause a completely different phenotype resembling a luteoma of pregnancy. We also show that three genes likely control these alternative hormonal responses. This clinical correlate of elevated LH reveals remarkably distinct, strain-dependent, ovarian phenotypes. In addition, these results support the rare incidence of GC tumors in the human population, and suggest that the ability of certain fertility drugs to cause ovarian tumors may depend on an individual's genetic predisposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pseudoautosomal region (PAR) is a segment of shared homology between the sex chromosomes. Here we report additional probes for this region of the mouse genome. Genetic and fluorescence in situ hybridization analyses indicate that one probe, PAR-4, hybridizes to the pseudoautosomal telomere and a minor locus at the telomere of chromosome 9 and that a PCR assay based on the PAR-4 sequence amplifies only the pseudoautosomal locus (DXYHgu1). The region detected by PAR-4 is structurally unstable; it shows polymorphism both between mouse strains and between animals of the same inbred strain, which implies an unusually high mutation rate. Variation occurs in the region adjacent to a (TTAGGG)n array. Two pseudoautosomal probes can also hybridize to the distal telomeres of chromosomes 9 and 13, and all three telomeres contain DXYMov15. The similarity between these telomeres may reflect ancestral telomere-telomere exchange.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aggregation chimeras were formed between C57BL/6 mice heterozygous for the Apcmin (Min) mutation and wild-type SWR mice, that differ in their Pla2g2a status, a modifier of Apcmin, and also in their resistance to intestinal polyp formation. Variation in the dolichos biflorus agglutinin-staining patterns of the intestines of these mouse strains was used to determine the chimeric composition of the intestine in individual mice and to examine the clonal composition of adenomas. Macroscopic adenoma numbers in chimeric mice were compared with the expected adenoma numbers based on the percentage of C57BL/6J-Apcmin/+ epithelium in individual mice. These results unexpectedly show that there was no apparent inhibitory effect of the SWR-derived (Pla2g2a wild-type) tissue on adenoma formation in the C57BL/6J-Apcmin/+ epithelium. This suggests that the main genetic modifiers of the Min phenotype act at a cellular or crypt-restricted level with no discernable systemic effect. All adenomas were seen to contain C57BL/6J-Apcmin/+-derived epithelium, confirming that the germ-line mutation of the mApc gene is necessary to initiate tumorigenesis in this model system, and that the mApc gene acts in a cell autonomous fashion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A systematic screen termed the allelic message display (AMD) was developed for the hunting of imprinted genes. In AMD, differential display PCR is adopted to image allelic expression status of multiple polymorphic transcripts in two parental mouse strains, reciprocal F1 hybrids and pooled backcross progenies. From the displayed patterns, paternally and maternally expressed transcripts can be unequivocally identified. The effectiveness of AMD screening was clearly demonstrated by the identification of a paternally expressed gene Impact on mouse chromosome 18, the predicted product of which belongs to the YCR59c/yigZ hypothetical protein family composed of yeast and bacterial proteins with currently unknown function. In contrast with previous screening methods necessitating positional cloning efforts or generation of parthenogenetic embryos, this approach requires nothing particular but appropriately crossed mice and can be readily applied to any tissues at various developmental stages. Hence, AMD would considerably accelerate the identification of imprinted genes playing pivotal roles in mammalian development and the pathogenesis of various diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hepatic fibrosis represents the generalized response of the liver to injury and is characterized by excessive deposition of extracellular matrix. The cellular basis of this process is complex and involves interplay of many factors, of which cytokines are prominent. We have identified divergent fibrosing responses to injury among mouse strains and taken advantage of these differences to examine and contrast T helper (Th)-derived cytokines during fibrogenesis. Liver injury was induced with carbon tetrachloride, fibrosis was quantitated, and Th1/Th2 cytokine mRNAs measured. Liver injury in BALB/c mice resulted in severe fibrosis, whereas C57BL/6 mice developed comparatively minimal fibrosis. Fibrogenesis was significantly modified in T and B cell-deficient BALB/c and C57BL/6 severe combined immunodeficient (SCID) mice compared with wild-type counterparts, suggesting a role of Th subsets. Fibrogenic BALB/c mice exhibited a Th2 response during the wounding response, whereas C57BL/6 mice displayed a Th1 response, suggesting that hepatic fibrosis is influenced by different T helper subsets. Moreover, mice lacking interferon γ, which default to the Th2 cytokine pathway, exhibited more pronounced fibrotic lesions than did wild-type animals. Finally, shifting of the Th2 response toward a Th1 response by treatment with neutralizing anti-interleukin 4 or with interferon γ itself ameliorated fibrosis in BALB/c mice. These data support a role for immune modulation of hepatic fibrosis and suggest that Th cytokine subsets can modulate the fibrotic response to injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ultra-long telomeres that have been observed in mice are not in accordance with the concept that critical telomere shortening is related to aging and immortalization. Here, we have used quantitative fluorescence in situ hybridization to estimate (T2AG3)n lengths of individual telomeres in various mouse strains. Telomere lengths were very heterogeneous, but specific chromosomes of bone marrow cells and skin fibroblasts from individual mice had similar telomere lengths. We estimate that the shortest telomeres are around 10 kb in length, indicating that each mouse cell has a few telomeres with (T2AG3)n lengths within the range of human telomeres. These short telomeres may be critical in limiting the replicative potential of murine cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonsyndromic clefting of the lip and palate in humans has a highly complex etiology, with both multiple genetic loci and exposure to teratogens influencing susceptibility. Previous studies using mouse models have examined only very small portions of the genome. Here we report the findings of a genome-wide search for susceptibility genes for teratogen-induced clefting in the AXB and BXA set of recombinant inbred mouse strains. We compare results obtained using phenytoin (which induces cleft lip) and 6-aminonicotinamide (which induces cleft palate). We use a new statistical approach based on logistic regression suitable for these categorical data to identify several chromosomal regions as possible locations of clefting susceptibility loci, and we review candidate genes located within each region. Because cleft lip and cleft palate do not frequently co-aggregate in human families and because these structures arise semi-independently during development, these disorders are usually considered to be distinct in etiology. Our data, however, implicate several of the same chromosomal regions for both forms of clefting when teratogen-induced. Furthermore, different parental strain alleles are usually associated with clefting of the lip versus that of the palate (i.e., allelic heterogeneity). Because several other chromosomal regions are associated with only one form of clefting, locus heterogeneity also appears to be involved. Our findings in this mouse model suggest several priority areas for evaluation in human epidemiological studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To determine the genetic causes and molecular mechanisms responsible for neurobehavioral differences in mice, we used highly parallel gene expression profiling to detect genes that are differentially expressed between the 129SvEv and C57BL/6 mouse strains at baseline and in response to seizure. In addition, we identified genes that are differentially expressed in specific brain regions. We found that approximately 1% of expressed genes are differentially expressed between strains in at least one region of the brain and that the gene expression response to seizure is significantly different between the two inbred strains. The results lead to the identification of differences in gene expression that may account for distinct phenotypes in inbred strains and the unique functions of specific brain regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. By combining the different types of expression data, GXD aims to provide increasingly complete information about the expression profiles of genes in different mouse strains and mutants, thus enabling valuable insights into the molecular networks that underlie normal development and disease. GXD is integrated with the Mouse Genome Database (MGD). Extensive interconnections with sequence databases and with databases from other species, and the development and use of shared controlled vocabularies extend GXD’s utility for the analysis of gene expression information. GXD is accessible through the Mouse Genome Informatics web site at http://www.informatic s.jax.org/ or directly at http://www.informatics.jax.org/me nus/expression_menu.shtml.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common disorder of iron metabolism caused by mutation in HFE, a gene encoding an MHC class I-like protein. Clinical studies demonstrate that the severity of iron loading is highly variable among individuals with identical HFE genotypes. To determine whether genetic factors other than Hfe genotype influence the severity of iron loading in the murine model of HH, we bred the disrupted murine Hfe allele onto three different genetically defined mouse strains (AKR, C57BL/6, and C3H), which differ in basal iron status and sensitivity to dietary iron loading. Serum transferrin saturations (percent saturation of serum transferrin with iron), hepatic and splenic iron concentrations, and hepatocellular iron distribution patterns were compared for wild-type (Hfe +/+), heterozygote (Hfe +/−), and knockout (Hfe −/−) mice from each strain. Although the Hfe −/− mice from all three strains demonstrated increased transferrin saturations and liver iron concentrations compared with Hfe +/+ mice, strain differences in severity of iron accumulation were striking. Targeted disruption of the Hfe gene led to hepatic iron levels in Hfe −/− AKR mice that were 2.5 or 3.6 times higher than those of Hfe −/− C3H or Hfe −/− C57BL/6 mice, respectively. The Hfe −/− mice also demonstrated strain-dependent differences in transferrin saturation, with the highest values in AKR mice and the lowest values in C3H mice. These observations demonstrate that heritable factors markedly influence iron homeostasis in response to Hfe disruption. Analysis of mice from crosses between C57BL/6 and AKR mice should allow the mapping and subsequent identification of genes modifying the severity of iron loading in this murine model of HH.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intrathymic T-cell development requires temporally regulated rearrangement and expression of T-cell receptor (TCR) genes. To assess the role of the TCR beta gene transcriptional enhancer (Ebeta) in this process, mouse strains in which Ebeta is deleted were generated using homologous recombination techniques. We report that mice homozygous for the Ebeta deletion, whether a selectable marker gene is present or not, show a block in alphabeta T-cell development at the CD4-CD8- double-negative cell stage, whereas the number of gammadelta+ T cells is normal, few CD4+CD8+ double-positive thymocytes and no alphabeta+ T cells are produced. DNA-PCR and RNA-PCR analyses of thymic cells from homozygous mutants showed no evidence of TCR beta gene rearrangement although germ-line Vbeta transcripts were detected at a low level, in heterozygous T cells, the targeted allele is not rearranged. Thus, deletion of Ebeta totally prevents rearrangement, but not transcription, of the targeted beta locus. These data formally establish the critical role played by Ebeta in cis-activation of the TCR beta locus for V(D)J recombination during alphabeta T-cell development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to carry out high-resolution genetic mapping at high throughput in the mouse is a critical rate-limiting step in the generation of genetically anchored contigs in physical mapping projects and the mapping of genetic loci for complex traits. To address this need, we have developed an efficient, high-resolution, large-scale genome mapping system. This system is based on the identification of polymorphic DNA sites between mouse strains by using interspersed repetitive sequence (IRS) PCR. Individual cloned IRS PCR products are hybridized to a DNA array of IRS PCR products derived from the DNA of individual mice segregating DNA sequences from the two parent strains. Since gel electrophoresis is not required, large numbers of samples can be genotyped in parallel. By using this approach, we have mapped > 450 polymorphic probes with filters containing the DNA of up to 517 backcross mice, potentially allowing resolution of 0.14 centimorgan. This approach also carries the potential for a high degree of efficiency in the integration of physical and genetic maps, since pooled DNAs representing libraries of yeast artificial chromosomes or other physical representations of the mouse genome can be addressed by hybridization of filter representations of the IRS PCR products of such libraries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Macrophages are considered to be the mediators of resistance to extra-intestinal Salmonella infections. Nevertheless, the initial cellular response to Salmonella infections consists primarily of polymorphonuclear leukocytes (PMN). To determine whether PMN serve an important function for the infected host, we made mice neutropenic with the rat mAb to RB6–8C5 and infected them i.v. with ≈103 Salmonella dublin or an isogenic derivative that lacks the virulence plasmid (LD842). We infected BALB/c mice, which have a point mutation in the macrophage-expressed gene Nramp1 that makes them susceptible to Salmonella, and BALB/c.D2 congenic mice, which have the wild-type Nramp1 gene that makes them resistant to Salmonella. Both mouse strains were resistant to LD842, and neutropenia made only the BALB/c strain susceptible to this infection. Neutropenic congenic mice, however, were susceptible only to wild-type S. dublin (plasmid+). These results show a complex interplay between plasmid-virulence genes in Salmonella, host macrophages, and PMN. Mice with normal macrophages need PMN to defend against nontyphoid Salmonella that carry a virulence plasmid but not against Salmonella without virulence plasmids. Mice with a mutant Nramp1 gene need PMN to defend against all Salmonella, even those that lack virulence plasmids. These results, plus the evidence that PMN kill Salmonella efficiently in vitro, suggest that Salmonella have adapted to grow inside macrophages where they are relatively sheltered from PMN. The adaptations that allow Salmonella to survive in macrophages do not protect them from PMN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recombinant adeno-associated virus (AAV) vectors have been used to transduce murine skeletal muscle as a platform for secretion of therapeutic proteins. The utility of this approach for treating alpha-1-antitrypsin (AAT) deficiency was tested in murine myocytes in vitro and in vivo. AAV vectors expressing the human AAT gene from either the cytomegalovirus (CMV) promoter (AAV-C-AT) or the human elongation factor 1-α promoter (AAV-E-AT) were examined. In vitro in C2C12 murine myoblasts, the expression levels in transient transfections were similar between the two vectors. One month after transduction, however, the human elongation factor 1 promoter mediated 10-fold higher stable human AAT expression than the CMV promoter. In vivo transduction was performed by injecting doses of up to 1.4 × 1013 particles into skeletal muscles of several mouse strains (C57BL/6, BALB/c, and SCID). In vivo, the CMV vector mediated higher levels of expression, with sustained serum levels over 800 μg/ml in SCID and over 400 μg/ml in C57BL/6 mice. These serum concentrations are 100,000-fold higher than those previously observed with AAV vectors in muscle and are at levels which would be therapeutic if achieved in humans. High level expression was delayed for several weeks but was sustained for over 15 wk. Immune responses were dependent upon the mouse strain and the vector dosage. These data suggest that recombinant AAV vector transduction of skeletal muscle could provide a means for replacing AAT or other essential serum proteins but that immune responses may be elicited under certain conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by production of autoantibodies against intracellular antigens including DNA, ribosomal P, Ro (SS-A), La (SS-B), and the spliceosome. Etiology is suspected to involve genetic and environmental factors. Evidence of genetic involvement includes: associations with HLA-DR3, HLA-DR2, Fcγ receptors (FcγR) IIA and IIIA, and hereditary complement component deficiencies, as well as familial aggregation, monozygotic twin concordance >20%, λs > 10, purported linkage at 1q41–42, and inbred mouse strains that consistently develop lupus. We have completed a genome scan in 94 extended multiplex pedigrees by using model-based linkage analysis. Potential [log10 of the odds for linkage (lod) > 2.0] SLE loci have been identified at chromosomes 1q41, 1q23, and 11q14–23 in African-Americans; 14q11, 4p15, 11q25, 2q32, 19q13, 6q26–27, and 12p12–11 in European-Americans; and 1q23, 13q32, 20q13, and 1q31 in all pedigrees combined. An effect for the FcγRIIA candidate polymorphism) at 1q23 (lod = 3.37 in African-Americans) is syntenic with linkage in a murine model of lupus. Sib-pair and multipoint nonparametric analyses also support linkage (P < 0.05) at nine loci detected by using two-point lod score analysis (lod > 2.0). Our results are consistent with the presumed complexity of genetic susceptibility to SLE and illustrate racial origin is likely to influence the specific nature of these genetic effects.