10 resultados para K EPOXIDE REDUCTASE
em National Center for Biotechnology Information - NCBI
Resumo:
The last unidentified gene encoding an enzyme involved in ergosterol biosynthesis in Saccharomyces cerevisiae has been cloned. This gene, designated ERG27, encodes the 3-keto sterol reductase, which, in concert with the C-4 sterol methyloxidase (ERG25) and the C-3 sterol dehydrogenase (ERG26), catalyzes the sequential removal of the two methyl groups at the sterol C-4 position. We developed a strategy to isolate a mutant deficient in converting 3-keto to 3-hydroxy-sterols. An ergosterol auxotroph unable to synthesize sterol or grow without sterol supplementation was mutagenized. Colonies were then selected that were nystatin-resistant in the presence of 3-ketoergostadiene and cholesterol. A new ergosterol auxotroph unable to grow on 3-ketosterols without the addition of cholesterol was isolated. The gene (YLR100w) was identified by complementation. Segregants containing the YLR100w disruption failed to grow on various types of 3-keto sterol substrates. Surprisingly, when erg27 was grown on cholesterol- or ergosterol-supplemented media, the endogenous compounds that accumulated were noncyclic sterol intermediates (squalene, squalene epoxide, and squalene dioxide), and there was little or no accumulation of lanosterol or 3-ketosterols. Feeding experiments in which erg27 strains were supplemented with lanosterol (an upstream intermediate of the C-4 demethylation process) and cholesterol (an end-product sterol) demonstrated accumulation of four types of 3-keto sterols identified by GC/MS and chromatographic properties: 4-methyl-zymosterone, zymosterone, 4-methyl-fecosterone, and ergosta-7,24 (28)-dien-3-one. In addition, a fifth intermediate was isolated and identified by 1H NMR as a 4-methyl-24,25-epoxy-cholesta-7-en-3-one. Implications of these results are discussed.
Resumo:
The vitamin K-dependent γ-glutamyl carboxylase catalyzes the posttranslational conversion of glutamic acid to γ-carboxyglutamic acid in precursor proteins containing the γ-carboxylation recognition site (γ-CRS). During this reaction, glutamic acid is converted to γ-carboxyglutamic acid while vitamin KH2 is converted to vitamin K 2,3-epoxide. Recombinant bovine carboxylase was purified free of γ-CRS-containing propeptide and endogenous substrate in a single-step immunoaffinity procedure. We show that in the absence of γ-CRS-containing propeptide and/or glutamate-containing substrate, carboxylase has little or no epoxidase activity. Epoxidase activity is induced by Phe-Leu-Glu-Glu-Leu (FLEEL) (9.2 pmol per min per pmol of enzyme), propeptide, residues −18 to −1 of proFactor IX (3.4 pmol per min per pmol of enzyme), FLEEL and propeptide (100 pmol per min per pmol of enzyme), and proPT28 (HVFLAPQQARSLLQRVRRANTFLEEVRK, residues −18 to +10 of human acarboxy-proprothrombin), (5.3 pmol per min per pmol of enzyme). These results indicate that in the absence of propeptide or glutamate-containing substrate, oxygenation of vitamin K by the carboxylase does not occur. Upon addition of propeptide or glutamate-containing substrate, the enzyme is converted to an active epoxidase. This regulatory mechanism prevents the generation of a highly reactive vitamin K intermediate in the absence of a substrate for carboxylation.
Resumo:
Aldose reductase (ALR2), a NADPH-dependent aldo-keto reductase (AKR), is widely distributed in mammalian tissues and has been implicated in complications of diabetes, including diabetic nephropathy. To identify a renal-specific reductase belonging to the AKR family, representational difference analyses of cDNA from diabetic mouse kidney were performed. A full-length cDNA with an ORF of 855 nt and yielding a ≈1.5-kb mRNA transcript was isolated from a mouse kidney library. Human and rat homologues also were isolated, and they had ≈91% and ≈97% amino acid identity with mouse protein. In vitro translation of the cDNA yielded a protein product of ≈33 kDa. Northern and Western blot analyses, using the cDNA and antirecombinant protein antibody, revealed its expression exclusively confined to the kidney. Like ALR2, the expression was up-regulated in diabetic kidneys. Its mRNA and protein expression was restricted to renal proximal tubules. The gene neither codistributed with Tamm–Horsfall protein nor aquaporin-2. The deduced protein sequence revealed an AKR-3 motif located near the N terminus, unlike the other AKR family members where it is confined to the C terminus. Fluorescence quenching and reactive blue agarose chromatography studies revealed that it binds to NADPH with high affinity (KdNADPH = 66.9 ± 2.3 nM). This binding domain is a tetrapeptide (Met-Ala-Lys-Ser) located within the AKR-3 motif that is similar to the other AKR members. The identified protein is designated as RSOR because it is renal-specific with properties of an oxido-reductase, and like ALR2 it may be relevant in the renal complications of diabetes mellitus.
Resumo:
Cd1 nitrite reductase catalyzes the conversion of nitrite to NO in denitrifying bacteria. Reduction of the substrate occurs at the d1-heme site, which faces on the distal side some residues thought to be essential for substrate binding and catalysis. We report the results obtained by mutating to Ala the two invariant active site histidines, His-327 and His-369, of the enzyme from Pseudomonas aeruginosa. Both mutants have lost nitrite reductase activity but maintain the ability to reduce O2 to water. Nitrite reductase activity is impaired because of the accumulation of a catalytically inactive form, possibly because the productive displacement of NO from the ferric d1-heme iron is impaired. Moreover, the two distal His play different roles in catalysis; His-369 is absolutely essential for the stability of the Michaelis complex. The structures of both mutants show (i) the new side chain in the active site, (ii) a loss of density of Tyr-10, which slipped away with the N-terminal arm, and (iii) a large topological change in the whole c-heme domain, which is displaced 20 Å from the position occupied in the wild-type enzyme. We conclude that the two invariant His play a crucial role in the activity and the structural organization of cd1 nitrite reductase from P. aeruginosa.
Resumo:
Aldose reductase (EC 1.1.1.21) catalyzes the NADPH-mediated conversion of glucose to sorbitol. The hyperglycemia of diabetes increases sorbitol production primarily through substrate availability and is thought to contribute to the pathogenesis of many diabetic complications. Increased sorbitol production can also occur at normoglycemic levels via rapid increases in aldose reductase transcription and expression, which have been shown to occur upon exposure of many cell types to hyperosmotic conditions. The induction of aldose reductase transcription and the accumulation of sorbitol, an organic osmolyte, have been shown to be part of the physiological osmoregulatory mechanism whereby renal tubular cells adjust to the intraluminal hyperosmolality during urinary concentration. Previously, to explore the mechanism regulating aldose reductase levels, we partially characterized the human aldose reductase gene promoter present in a 4.2-kb fragment upstream of the transcription initiation start site. A fragment (-192 to +31 bp) was shown to contain several elements that control the basal expression of the enzyme. In this study, we examined the entire 4.2-kb human AR gene promoter fragment by deletion mutagenesis and transfection studies for the presence of osmotic response enhancer elements. An 11-bp nucleotide sequence (TGGAAAATTAC) was located 3.7 kb upstream of the transcription initiation site that mediates hypertonicity-responsive enhancer activity. This osmotic response element (ORE) increased the expression of the chloramphenicol acetyltransferase reporter gene product 2-fold in transfected HepG2 cells exposed to hypertonic NaCl media as compared with isoosmotic media. A more distal homologous sequence is also described; however, this sequence has no osmotic enhancer activity in transfected cells. Specific ORE mutant constructs, gel shift, and DNA fragment competition studies confirm the nature of the element and identify specific nucleotides essential for enhancer activity. A plasmid construct containing three repeat OREs and a heterologous promoter increased expression 8-fold in isoosmotic media and an additional 4-fold when the transfected cells are subjected to hyperosmotic stress (total approximately 30-fold). These findings will permit future studies to identify the transcription factors involved in the normal regulatory response mechanism to hypertonicity and to identify whether and how this response is altered in a variety of pathologic states, including diabetes.
Resumo:
Pathogenic bacteria rely on adhesins to bind to host tissues. Therefore, the maintenance of the functional properties of these extracellular macromolecules is essential for the pathogenicity of these microorganisms. We report that peptide methionine sulfoxide reductase (MsrA), a repair enzyme, contributes to the maintenance of adhesins in Streptococcus pneumoniae, Neisseria gonorrhoeae, and Escherichia coli. A screen of a library of pneumococcal mutants for loss of adherence uncovered a MsrA mutant with 75% reduced binding to GalNAcbeta1-4Gal containing eukaryotic cell receptors that are present on type II lung cells and vascular endothelial cells. Subsequently, it was shown that an E. coli msrA mutant displayed decreased type I fimbriae-mediated, mannose-dependent, agglutination of erythrocytes. Previous work [Taha, M. K., So, M., Seifert, H. S., Billyard, E. & Marchal, C. (1988) EMBO J. 7, 4367-4378] has shown that mutants with defects in the pilA-pilB locus from N. gonorrhoeae were altered in their production of type IV pili. We show that pneumococcal MsrA and gonococcal PilB expressed in E. coli have MsrA activity. Together these data suggest that MsrA is required for the proper expression or maintenance of functional adhesins on the surfaces of these three major pathogenic bacteria.
Resumo:
The possible relationship of selenium to immunological function which has been suggested for decades was investigated in studies on selenium metabolism in human T cells. One of the major 75Se-labeled selenoproteins detected was purified to homogeneity and shown to be a homodimer of 55-kDa subunits. Each subunit contained about 1 FAD and at least 0.74 Se. This protein proved to be thioredoxin reductase (TR) on the basis of its catalytic activities, cross-reactivity with anti-rat liver TR antibodies, and sequence identities of several tryptic peptides with the published deduced sequence of human placental TR. Physicochemical characteristics of T-cell TR were similar to those of a selenocysteine (Secys)-containing TR recently isolated from human lung adenocarcinoma cells. The sequence of a 12-residue 75Se-labeled tryptic peptide from T-cell TR was identical with a C-terminal-deduced sequence of human placental TR except that Secys was present in the position corresponding to TGA, previously thought to be the termination codon, and this was followed by Gly-499, the actual C-terminal amino acid. The presence of the unusual conserved Cys-Secys-Gly sequence at the C terminus of TR in addition to the redox active cysteines of the Cys-Val-Asn-Val-Gly-Cys motif in the FAD-binding region may account for the peroxidase activity and the relatively low substrate specificity of mammalian TRs. The finding that T-cell TR is a selenoenzyme that contains Se in a conserved C-terminal region provides another example of the role of selenium in a major antioxidant enzyme system (i.e., thioredoxin-thioredoxin reductase), in addition to the well-known glutathione peroxidase enzyme system.
Resumo:
Escherichia coli dihydrofolate reductase (DHFR; EC 1.5.1.3) contains five tryptophan residues that have been replaced with 6-19F-tryptophan. The 19F NMR assignments are known in the native, unliganded form and the unfolded form. We have used these assignments with stopped-flow 19F NMR spectroscopy to investigate the behavior of specific regions of the protein in real time during urea-induced unfolding. The NMR data show that within 1.5 sec most of the intensities of the native 19F resonances of the protein are lost but only a fraction (approximately 20%) of the intensities of the unfolded resonances appears. We postulate that the early disappearance of the native resonances indicates that most of the protein rapidly forms an intermediate in which the side chains have considerable mobility. Stopped-flow far-UV circular dichroism measurements indicate that this intermediate retains native-like secondary structure. Eighty percent of the intensities of the NMR resonances assigned to the individual tryptophans in the unfolded state appear with similar rate constants (k approximately 0.14 sec-1), consistent with the major phase of unfolding observed by stopped-flow circular dichroism (representing 80% of total amplitude). These data imply that after formation of the intermediate, which appears to represent an expanded structural form, all regions of the protein unfold at the same rate. Stopped-flow measurements of the fluorescence and circular dichroism changes associated with the urea-induced unfolding show a fast phase (half-time of about 1 sec) representing 20% of the total amplitude in addition to the slow phase mentioned above. The NMR data show that approximately 20% of the total intensity for each of the unfolded tryptophan resonances is present at 1.5 sec, indicating that these two phases may represent the complete unfolding of the two different populations of the native protein.
Resumo:
Although bacterial strain able to grow in the presence of organic solvents have been isolated, little is known about the mechanism of their resistance. In the present study, 1,2,3,4-tetrahydronaphthalene (tetralin), a solvent with potential applications in industrial biocatalysis, was used to select a resistant mutant of Escherichia coli. The resultant mutant strain was tested for resistance to a wide range of solvents of varying hydrophobicities and was found to be resistant not only to tetralin itself but also to cyclohexane, propylbenzene, and 1,2-dihydronaphthalene. A recombinant library from mutant DNA was used to clone the resistance gene. The sequence of the cloned locus was determined and found to match the sequence of the previously described alkylhydroperoxide reductase operon ahpCF. The mutation was localized to a substitution of valine for glycine at position 142 in the coding region of ahpC, which is the gene encoding the catalytic subunit of the enzyme. The ahpC mutant was found to have an activity that was three times that of the wild type in reducing tetralin hydroperoxide to 1,2,3,4-tetrahydro-1-naphthol. We conclude that the toxicity of such solvents as tetralin is caused by the formation of toxic hydroperoxides in the cell. The ahpC mutation increases the activity of the enzyme toward hydrophobic hydroperoxides, thereby conferring resistance. The ahpC mutant was sensitive to the more hydrophilic solvents xylene and toluene, suggesting that there are additional mechanisms of solvent toxicity. Mutants resistant to a mixture of xylene and tetralin were isolated from the ahpC mutant but not from the wild-type strain.
Resumo:
Genetic and physiological studies of the Drosophila Hyperkinetic (Hk) mutant revealed defects in the function or regulation of K+ channels encoded by the Shaker (Sh) locus. The Hk polypeptide, determined from analysis of cDNA clones, is a homologue of mammalian K+ channel beta subunits (Kv beta). Coexpression of Hk with Sh in Xenopus oocytes increases current amplitudes and changes the voltage dependence and kinetics of activation and inactivation, consistent with predicted functions of Hk in vivo. Sequence alignments show that Hk, together with mammalian Kv beta, represents an additional branch of the aldo-keto reductase superfamily. These results are relevant to understanding the function and evolutionary origin of Kv beta.