4 resultados para Innate response

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

“Natural” Igs, mainly IgM, comprise part of the innate immune system present in healthy individuals, including antigen-free mice. These Igs are thought to delay pathogenicity of infecting agents until antigen-induced high affinity Igs of all isotypes are produced. Previous studies suggested that the acquired humoral response arises directly from the innate response, i.e., that B cells expressing natural IgM, upon antigen encounter, differentiate to give rise both to cells that secrete high amounts of IgM and to cells that undergo affinity maturation and isotype switching. However, by using a murine model of influenza virus infection, we demonstrate here that the B cells that produce natural antiviral IgM neither increase their IgM production nor undergo isotype switching to IgG2a in response to the infection. These cells are distinct from the B cells that produce the antiviral response after encounter with the pathogen. Our data therefore demonstrate that the innate and the acquired humoral immunities to influenza virus are separate effector arms of the immune system and that antigen exposure per se is not sufficient to increase natural antibody production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complement system represents a cascade of serum proteins, which provide a major effector function in innate immunity. Recent studies have revealed that complement links innate and adaptive immunity via complement receptors CD21/CD35 in that it enhances the B cell memory response to noninfectious protein antigens introduced i.v. To examine the importance of complement for immune responses to virus infection in a peripheral tissue, we compared the B cell memory response of mice deficient in complement C3, C4, or CD21/CD35 with wild-type controls. We found that the deficient mice failed to generate a normal memory response, which is characterized by a reduction in IgG antibody and germinal centers. Thus, complement is important not only in the effector function of innate immunity but also in the stimulation of memory B cell responses to viral-infected cell antigens in both blood and peripheral tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies to phosphatidylcholine (PtC), a common constituent of mammalian and bacterial cell membranes, represent a large proportion of the natural antibody repertoire in mice. Previous studies of several mouse strains (e.g., C57BL/6) have shown that anti-PtC antibodies are mainly encoded by the VH11 and VH12 immunoglobulin heavy chain variable region gene families. We show here, however, that VH11 and VH12 encode only a small proportion of the anti-PtC antibodies in BALB/c mice. Instead, VHQ52-encoded antibodies predominate in this strain. In addition, two-thirds of the cells expressing VHQ52 family genes use a single gene (which, interestingly, has been previously shown to predominate in the anti-oxazolone response). We also show here that in anti-PtC antibodies from all strains, the distinctive antigen-binding sites associated with VHQ52 differ substantially from those associated with VH11 and VH12. That is, VHQ52-containing transcripts preferentially use the joining region JH4 rather than JH1 and exhibit more diverse complementarity-determining region 3 (CDR3) junctions with more N-region nucleotide additions at the gene segment junctions. Thus, the VH gene family that predominates in the anti-PtC repertoire differs among mouse strains, whereas the distinctive VHDJH rearrangements (CDR3, JH) associated with each VH gene family are similar in all strains. We discuss these findings in the context of a recent hypothesis suggesting that CDR3 structure, independent of VH framework, is sufficient to define the specificity of an antibody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immunity in Drosophila is characterized by the inducible expression of antimicrobial peptides. We have investigated the development and regulation of immune responsiveness in Drosophila embryos after infection. Immune competence, as monitored by the induction of Cecropin A1-lacZ constructs, was observed first in the embryonic yolk. This observation suggests that the yolk plays an important role in the humoral immune response of the developing embryo by synthesizing antimicrobial peptides. Around midembryogenesis, the response in the yolk was diminished. Simultaneously, Cecropin expression became inducible in a large number of cells in the epidermis, demonstrating that late-stage embryos can synthesize their own antibiotics in the epidermis. This production likely serves to provide the hatching larva with an active antimicrobial barrier and protection against systemic infections. Cecropin expression in the yolk required the presence of a GATA site in the promoter as well as the involvement of the GATA-binding transcription factor Serpent (dGATAb). In contrast, neither the GATA site nor Serpent were necessary for Cecropin expression in the epidermis. Thus, the inducible immune responses in the yolk and in the epidermis can be uncoupled and call for distinct sets of transcription factors. Our data suggest that Serpent is involved in the distinction between a systemic response in the yolk/fat body and a local immune response in epithelial cells. In addition, the present study shows that signal transduction pathways controlling innate and epithelial defense reactions can be dissected genetically in Drosophila embryos.