30 resultados para Glycine max

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The soybean genome hosts a family of several hundred, relatively homogeneous copies of a large, copia/Ty1-like retroelement designated SIRE-1. A copy of this element has been recovered from a Glycine max genomic library. DNA sequence analysis of two SIRE-1 subclones revealed that SIRE-1 contains a long, uninterrupted, ORF between the 3′ end of the pol ORF and the 3′ long terminal repeat (LTR), a region that harbors the env gene in retroviral genomes. Conceptual translation of this second ORF produces a 70-kDa protein. Computer analyses of the amino acid sequence predicted patterns of transmembrane domains, α-helices, and coiled coils strikingly similar to those found in mammalian retroviral envelope proteins. In addition, a 65-residue, proline-rich domain is characterized by a strong amino acid compositional bias virtually identical to that of the 60-amino acid, proline-rich neutralization domain of the feline leukemia virus surface protein. The assignment of SIRE-1 to the copia/Ty1 family was confirmed by comparison of the conceptual translation of its reverse transcriptase-like domain with those of other retroelements. This finding suggests the presence of a proretrovirus in a plant genome and is the strongest evidence to date for the existence of a retrovirus-like genome closely related to copia/Ty1 retrotransposons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glutamine synthetase (GS) is the key enzyme in ammonia assimilation and catalyzes the ATP-dependent condensation of NH3 with glutamate to produce glutamine. GS in plants is an octameric enzyme. Recent work from our laboratory suggests that GS activity in plants may be regulated at the level of protein turnover (S.J. Temple, T.J. Knight, P.J. Unkefer, C. Sengupta-Gopalan [1993] Mol Gen Genet 236: 315–325; S.J. Temple, S. Kunjibettu, D. Roche, C. Sengupta-Gopalan [1996] Plant Physiol 112: 1723–1733; S.J. Temple, C. Sengupta-Gopalan [1997] In C.H. Foyer, W.P. Quick, eds, A Molecular Approach to Primary Metabolism in Higher Plants. Taylor & Francis, London, pp 155–177). Oxidative modification of GS has been implicated as the first step in the turnover of GS in bacteria. By incubating soybean (Glycine max) root extract enriched in GS in a metal-catalyzed oxidation system to produce the ·OH radical, we have shown that GS is oxidized and that oxidized GS is inactive and more susceptible to degradation than nonoxidized GS. Histidine and cysteine protect GS from metal-catalyzed inactivation, indicating that oxidation modifies the GS active site and that cysteine and histidine residues are the site of modification. Similarly, ATP and particularly ATP/glutamate give the enzyme the greatest protection against oxidative inactivation. The roots of plants fed ammonium nitrate showed a 3-fold increase in the level of GS polypeptides and activity compared with plants not fed ammonium nitrate but without a corresponding increase in the GS transcript level. This would suggest either translational or posttranslational control of GS levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cyclic β-(1→3),β-(1→6)-d-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two genes, ndvB and ndvC. Mutation in either gene affects glucan synthesis, as well as the ability of the bacterium to establish a successful symbiotic interaction with the legume host soybean (Glycine max). B. japonicum strain AB-14 (ndvB::Tn5) does not synthesize β-glucans, and strain AB-1 (ndvC::Tn5) synthesizes a cyclic β-glucan lacking β-(1→6)-glycosidic bonds. We determined that the structure of the glucan synthesized by strain AB-1 is cyclodecakis-(1→3)-β-d-glucosyl, a cyclic β-(1→3)-linked decasaccharide in which one of the residues is substituted in the 6 position with β-laminaribiose. Cyclodecakis-(1→3)-β-d-glucosyl did not suppress the fungal β-glucan-induced plant defense response in soybean cotyledons and had much lower affinity for the putative membrane receptor protein than cyclic β-(1→3),β-(1→6)-glucans produced by wild-type B. japonicum. This is consistent with the hypothesis presented previously that the wild-type cyclic β-glucans may function as suppressors of a host defense response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

H2O2 is a widespread molecule in many biological systems. It is created enzymatically in living cells during various oxidation reactions and by leakage of electrons from the electron transport chains. Depending on the concentration H2O2 can induce cell protective responses, programmed cell death, or necrosis. Here we provide evidence that H2O2 may function as a developmental signal in the differentiation of secondary walls in cotton (Gossypium hirsutum) fibers. Three lines of evidence support this conclusion: (a) the period of H2O2 generation coincided with the onset of secondary wall deposition, (b) inhibition of H2O2 production or scavenging the available H2O2 from the system prevented the wall differentiation process, and (c) exogenous addition of H2O2 prematurely promoted secondary wall formation in young fibers. Furthermore, we provide support for the concept that H2O2 generation could be mediated by the expression of the small GTPase Rac, the accumulation of which was shown previously to be strongly induced during the onset of secondary wall differentiation. In support of Rac's role in the activation of NADPH oxidase and the generation of reactive oxygen species, we transformed soybean (Glycine max) and Arabidopsis cells with mutated Rac genes. Transformation with a dominantly activated cotton Rac13 gene resulted in constitutively higher levels of H2O2, whereas transformation with the antisense and especially with dominant-negative Rac constructs decreased the levels of H2O2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants commonly respond to pathogen infection by increasing ethylene production, but it is not clear if this ethylene does more to promote disease susceptibility or disease resistance. Ethylene production and/or responsiveness can be altered by genetic manipulation. The present study used mutagenesis to identify soybean (Glycine max L. Merr.) lines with reduced sensitivity to ethylene. Two new genetic loci were identified, Etr1 and Etr2. Mutants were compared with isogenic wild-type parents for their response to different soybean pathogens. Plant lines with reduced ethylene sensitivity developed similar or less-severe disease symptoms in response to virulent Pseudomonas syringae pv glycinea and Phytophthora sojae, but some of the mutants developed similar or more-severe symptoms in response to Septoria glycines and Rhizoctonia solani. Gene-for-gene resistance against P. syringae expressing avrRpt2 remained effective, but Rps1-k-mediated resistance against P. sojae races 4 and 7 was disrupted in the strong ethylene-insensitive etr1-1 mutant. Rps1-k-mediated resistance against P. sojae race 1 remained effective, suggesting that the Rps1-k locus may encode more than one gene for disease resistance. Overall, our results suggest that reduced ethylene sensitivity can be beneficial against some pathogens but deleterious to resistance against other pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leguminous plants regulate the number of Bradyrhizobium- or Rhizobium-infected sites that develop into nitrogen-fixing root nodules. Ethylene has been implicated in the regulation of nodule formation in some species, but this role has remained in question for soybean (Glycine max). The present study used soybean mutants with decreased responsiveness to ethylene, soybean mutants with defective regulation of nodule number, and Ag+ inhibition of ethylene perception to examine the role of ethylene in the regulation of nodule number. Nodule numbers on ethylene-insensitive mutants and plants treated with Ag+ were similar to those on wild-type plants and untreated plants, respectively. Hypernodulating mutants displayed wild-type ethylene sensitivity. Suppression of nodule numbers by high nitrate was also similar between ethylene-insensitive plants, wild-type plants, and plants treated with Ag+. Ethylene insensitivity of the roots of etr1-1 mutants was confirmed using assays for sensitivity to 1-aminocyclopropane-1-carboxylic acid and for ethylene-stimulated root-hair formation. Additional phenotypes of etr1-1 roots were also characterized. Ethylene-dependent pathways regulate the number of nodules that form on species such as pea and Medicago truncatula, but our data indicate that ethylene is less significant in regulating the number of nodules that form on soybean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multisubunit form of acetyl coenzyme A (CoA) carboxylase (ACCase) from soybean (Glycine max) was characterized. The enzyme catalyzes the formation of malonyl CoA from acetyl CoA, a rate-limiting step in fatty acid biosynthesis. The four known components that constitute plastid ACCase are biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and the α- and β-subunits of carboxyltransferase (α- and β-CT). At least three different cDNAs were isolated from germinating soybean seeds that encode BC, two that encode BCCP, and four that encode α-CT. Whereas BC, BCCP, and α-CT are products of nuclear genes, the DNA that encodes soybean β-CT is located in chloroplasts. Translation products from cDNAs for BC, BCCP, and α-CT were imported into isolated pea (Pisum sativum) chloroplasts and became integrated into ACCase. Edman microsequence analysis of the subunits after import permitted the identification of the amino-terminal sequence of the mature protein after removal of the transit sequences. Antibodies specific for each of the chloroplast ACCase subunits were generated against products from the cDNAs expressed in bacteria. The antibodies permitted components of ACCase to be followed during fractionation of the chloroplast stroma. Even in the presence of 0.5 m KCl, a complex that contained BC plus BCCP emerged from Sephacryl 400 with an apparent molecular mass greater than about 800 kD. A second complex, which contained α- and β-CT, was also recovered from the column, and it had an apparent molecular mass of greater than about 600 kD. By mixing the two complexes together at appropriate ratios, ACCase enzymatic activity was restored. Even higher ACCase activities were recovered by mixing complexes from pea and soybean. The results demonstrate that the active form of ACCase can be reassembled and that it could form a high-molecular-mass complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In legume nodules the [O2] in the infected cells limits respiration and nitrogenase activity, becoming more severe if nodules are exposed to subambient O2 levels. To identify the site of O2 limitation, adenylate pools were measured in soybean (Glycine max) nodules that were frozen in liquid N2 before being ground, lyophilized, sonicated, and separated on density gradients of nonaqueous solvents (heptane/tetrachloroethylene) to yield fractions enriched in bacteroid or plant components. In nodules maintained in air, the adenylate energy charge (AEC = [ATP + 0.5 ADP]/[ATP + ADP + AMP]) was lower in the plant compartment (0.65 ± 0.04) than in the bacteroids (0.76 ± 0.095), but did not change when the nodulated root system was exposed to 10% O2. In contrast, 10% O2 decreased the bacteroid AEC to 0.56 ± 0.06, leading to the conclusion that they are the primary site of O2 limitation in nodules. To account for the low but unchanged AEC in the plant compartment and for the evidence that mitochondria are localized in O2-enriched microenvironments adjacent to intercellular spaces, we propose that steep adenylate gradients may exist between the site of ATP synthesis (and ADP use) in the mitochondria and the extra-mitochondrial sites of ATP use (and ADP production) throughout the large, infected cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trehalose (α-d-glucopyranosyl-1,1-α-d-glucopyranoside), a disaccharide widespread among microbes and lower invertebrates, is generally believed to be nonexistent in higher plants. However, the recent discovery of Arabidopsis genes whose products are involved in trehalose synthesis has renewed interest in the possibility of a function of trehalose in higher plants. We previously showed that trehalase, the enzyme that degrades trehalose, is present in nodules of soybean (Glycine max [L.] Merr.), and we characterized the enzyme as an apoplastic glycoprotein. Here we describe the purification of this trehalase to homogeneity and the cloning of a full-length cDNA encoding this enzyme, named GMTRE1 (G. max trehalase 1). The amino acid sequence derived from the open reading frame of GMTRE1 shows strong homology to known trehalases from bacteria, fungi, and animals. GMTRE1 is a single-copy gene and is expressed at a low but constant level in many tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heme and chlorophyll accumulate to high levels in legume root nodules and in photosynthetic tissues, respectively, and they are both derived from the universal tetrapyrrole precursor δ-aminolevulinic acid (ALA). The first committed step in ALA and tetrapyrrole synthesis is catalyzed by glutamyl-tRNA reductase (GTR) in plants. A soybean (Glycine max) root-nodule cDNA encoding GTR was isolated by complementation of an Escherichia coli GTR-defective mutant for restoration of ALA prototrophy. Gtr mRNA was very low in uninfected roots but accumulated to high levels in root nodules. The induction of Gtr mRNA in developing nodules was subsequent to that of the gene Enod2 (early nodule) and coincided with leghemoglobin mRNA accumulation. Genomic analysis revealed two Gtr genes, Gtr1 and a 3′ portion of Gtr2, which were isolated from the soybean genome. RNase-protection analysis using probes specific to Gtr1 and Gtr2 showed that both genes were expressed, but Gtr1 mRNA accumulated to significantly higher levels. In addition, the qualitative patterns of expression of Gtr1 and Gtr2 were similar to each other and to total Gtr mRNA in leaves and nodules of mature plants and etiolated plantlets. The data indicate that Gtr1 is universal for tetrapyrrole synthesis and that a Gtr gene specific for a tissue or tetrapyrrole is unlikely. We suggest that ALA synthesis in specialized root nodules involves an altered spatial expression of genes that are otherwise induced strongly only in photosynthetic tissues of uninfected plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mt4 is a cDNA representing a phosphate-starvation-inducible gene from Medicago truncatula that is down-regulated in roots in response to inorganic phosphate (Pi) fertilization and colonization by arbuscular mycorrhizal fungi. Split-root experiments revealed that the expression of the Mt4 gene in M. truncatula roots is down-regulated systemically by both Pi fertilization and colonization by arbuscular mycorrhizal fungi. A comparison of Pi levels in these tissues suggested that this systemic down-regulation is not caused by Pi accumulation. Using a 30-bp region of the Mt4 gene as a probe, Pi-starvation-inducible Mt4-like genes were detected in Arabidopsis and soybean (Glycine max L.), but not in corn (Zea mays L.). Analysis of the expression of the Mt4-like Arabidopsis gene, At4, in wild-type Arabidopsis and pho1, a mutant unable to load Pi into the xylem, suggests that Pi must first be translocated to the shoot for down-regulation to occur. The data from the pho1 and split-root studies are consistent with the presence of a translocatable shoot factor responsible for mediating the systemic down-regulation of Mt4-like genes in roots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitivity of N2 fixation to drought stress in soybean (Glycine max Merr.) has been shown to be associated with high ureide accumulation in the shoots, which has led to the hypothesis that N2 fixation during drought is decreased by a feedback mechanism. The ureide feedback hypothesis was tested directly by measuring the effect of 10 mm ureide applied by stem infusion or in the nutrient solution of hydroponically grown plants on acetylene reduction activity (ARA). An almost complete inhibition of ARA was observed within 4 to 7 d after treatment, accompanied by an increase in ureide concentration in the shoot but not in the nodules. The inhibition of ARA resulting from ureide treatments was dependent on the concentration of applied ureide. Urea also inhibited ARA but asparagine resulted in the greatest inhibition of nodule activity. Because ureides did not accumulate in the nodule upon ureide treatment, it was concluded that they were not directly inhibitory to the nodules but that their influence mediated through a derivative compound, with asparagine being a potential candidate. Ureide treatment resulted in a continual decrease in nodule permeability to O2 simultaneous with the inhibition of nitrogenase activity during a 5-d treatment period, although it was not clear whether the latter phenomenon was a consequence or a cause of the decrease in the nodule permeability to O2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arginase (EC 3.5.3.1) transcript level and activity were measured in soybean (Glycine max L.) embryos from the reserve deposition stage to postgermination. Using a cDNA probe for a small soybean arginase gene family, no transcript was detected in developing embryos. However, arginase transcripts increased sharply on germination, reaching a maximum at 3 to 5 d after germination. There was low but measurable in vitro arginase specific activity in developing embryos (less than 6% of seedling maximum). During germination arginase specific activity increased in parallel with the sharply increasing arginase transcript level. Seedling arginase activity was largely localized in cotyledons. Arginase activity was assayed in vivo by measuring urea accumulation in a urease-deficient mutant. No urea was detected in developing embryos, whereas accumulated urea paralleled arginase specific activity and transcript level in germinating seedlings. As in planta embryos, cultured cotyledons did not accumulate urea when arginine (Arg) was provided with other amino acids in a “mock” seed-coat exudate. Arg as the sole nitrogen source was converted to urea but did not support cotyledon growth. There appeared to be a lack of recruitment of the low-level arginase activity to hydrolyze free Arg in developing embryos, thus avoiding a futile urea cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a mitochondrial biotin-containing enzyme whose metabolic function is not well understood in plants. In soybean (Glycine max) seedlings the organ-specific and developmentally induced changes in MCCase expression are regulated by mechanisms that control the accumulation of MCCase mRNA and the activity of the enzyme. During soybean cotyledon development, when seed-storage proteins are degraded, leucine (Leu) accumulation peaks transiently at 8 d after planting. The coincidence between peak MCCase expression and the decline in Leu content provides correlative evidence that MCCase is involved in the mitochondrial catabolism of Leu. Direct evidence for this conclusion was obtained from radiotracer metabolic studies using extracts from isolated mitochondria. These experiments traced the metabolic fate of [U-14C]Leu and NaH14CO3, the latter of which was incorporated into methylglutaconyl-coenzyme A (CoA) via MCCase. These studies directly demonstrate that plant mitochondria can catabolize Leu via the following scheme: Leu → α-ketoisocaproate → isovaleryl-CoA → 3-methylcrotonyl-CoA → 3-methylglutaconyl-CoA → 3-hydroxy-3-methylglutaryl-CoA → acetoacetate + acetyl-CoA. These findings demonstrate for the first time, to our knowledge, that the enzymes responsible for Leu catabolism are present in plant mitochondria. We conclude that a primary metabolic role of MCCase in plants is the catabolism of Leu.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Treatment of soybean (Glycine max L. cv Williams 82) cell-suspension cultures with Pseudomonas syringae pv glycinea (Psg) harboring an avirulence gene (avrA) or with yeast elicitor resulted in an oxidative burst characterized by the accumulation of H2O2. This burst, and the resultant induction of glutathione S-transferase transcripts, occurred more rapidly and was more prolonged if cells were simultaneously treated with serine protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF) or diisopropylfluorophosphate. PMSF and diisopropylfluorophosphate potentiate a large oxidative burst in cells exposed to Psg harboring the avrC avirulence gene, which is not recognized by the soybean cultivar used in this study. The potentiated burst was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase, and by the protein kinase inhibitor K252a. PMSF treatment of elicited cells or cells exposed to Psg:avrA caused a large increase in the accumulation of the isoflavonoid phytoalexin glyceollin; however, this was not associated with increased levels of transcripts encoding key phytoalexin biosynthetic enzymes. Glyceollin accumulation was inhibited by diphenylene iodonium; however, the oxidative burst in cells treated with Psg:avrC and PMSF was not followed by phytoalexin accumulation. We conclude that active oxygen species from the oxidative burst are necessary but not sufficient for inducing isoflavonoid phytoalexin accumulation in soybean cells.