37 resultados para GUINEA-PIG

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mammalian cochlea, the basilar membrane's (BM) mechanical responses are amplified, and frequency tuning is sharpened through active feedback from the electromotile outer hair cells (OHCs). To be effective, OHC feedback must be delivered to the correct region of the BM and introduced at the appropriate time in each cycle of BM displacement. To investigate when OHCs contribute to cochlear amplification, a laser-diode interferometer was used to measure tone-evoked BM displacements in the basal turn of the guinea pig cochlea. Measurements were made at multiple sites across the width of the BM, which are tuned to the same characteristic frequency (CF). In response to CF tones, the largest displacements occur in the OHC region and phase lead those measured beneath the outer pillar cells and adjacent to the spiral ligament by about 90°. Postmortem, responses beneath the OHCs are reduced by up to 65 dB, and all regions across the width of the BM move in unison. We suggest that OHCs amplify BM responses to CF tones when the BM is moving at maximum velocity. In regions of the BM where OHCs contribute to its motion, the responses are compressive and nonlinear. We measured the distribution of nonlinear compressive vibrations along the length of the BM in response to a single frequency tone and estimated that OHC amplification is restricted to a 1.25- to 1.40-mm length of BM centered on the CF place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic islets from young normal and scorbutic male guinea pigs were examined for their ability to release insulin when stimulated with elevated D-glucose. Islets from normal guinea pigs released insulin in a D-glucose-dependent manner showing a rapid initial secretion phase and three secondary secretion waves during a 120-min period. Islets from scorbutic guinea pigs failed to release insulin during the immediate period, and only delayed and decreased responses were observed over the 40-60 min after D-glucose elevation. Insulin release from scorbutic islets was greatly elevated if 5 mM L-ascorbic acid 2-phosphate was supplemented in the perifusion medium during the last 60 min of perifusion. When 5 mM L-ascorbic acid 2-phosphate was added to the perifusion medium concurrently with elevation of medium D-glucose, islets from scorbutic guinea pigs released insulin as rapidly as control guinea pig islets and to a somewhat greater extent. L-Ascorbic acid 2-phosphate without elevated D-glucose had no effect on insulin release by islets from normal or scorbutic guinea pigs. The pancreas from scorbutic guinea pigs contained 2.4 times more insulin than that from control guinea pigs, suggesting that the decreased insulin release from the scorbutic islets was not due to decreased insulin synthesis but due to abnormal insulin secretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here that during a permanent cardiac arrest, rodent brain tissue is “physiologically” preserved in situ in a particular quiescent state. This state is characterized by the absence of electrical activity and by a critical period of 5–6 hr during which brain tissue can be reactivated upon restoration of a simple energy (glucose/oxygen) supply. In rat brain slices prepared 1–6 hr after cardiac arrest and maintained in vitro for several hours, cells with normal morphological features, intrinsic membrane properties, and spontaneous synaptic activity were recorded from various brain regions. In addition to functional membrane channels, these neurons expressed mRNA, as revealed by single-cell reverse transcription–PCR, and could synthesize proteins de novo. Slices prepared after longer delays did not recover. In a guinea pig isolated whole-brain preparation that was cannulated and perfused with oxygenated saline 1–2 hr after cardiac arrest, cell activity and functional long-range synaptic connections could be restored although the electroencephalogram remained isoelectric. Perfusion of the isolated brain with the γ-aminobutyric acid A receptor antagonist picrotoxin, however, could induce self-sustained temporal lobe epilepsy. Thus, in rodents, the duration of cardiac arrest compatible with a short-term recovery of neuronal activity is much longer than previously expected. The analysis of the parameters that regulate this duration may bring new insights into the prevention of postischemic damages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an immediate need for identification of new antifungal targets in opportunistic pathogenic fungi like Candida albicans. In the past, efforts have focused on synthesis of chitin and glucan, which confer mechanical strength and rigidity upon the cell wall. This paper describes the molecular analysis of CaMNT1, a gene involved in synthesis of mannoproteins, the third major class of macromolecule found in the cell wall. CaMNT1 encodes an α-1,2-mannosyl transferase, which adds the second mannose residue in a tri-mannose oligosaccharide structure which represents O-linked mannan in C. albicans. The deduced amino acid sequence suggests that CaMnt1p is a type II membrane protein residing in a medial Golgi compartment. The absence of CaMnt1p reduced the ability of C. albicans cells to adhere to each other, to human buccal epithelial cells, and to rat vaginal epithelial cells. Both heterozygous and homozygous Camnt1 null mutants of C. albicans showed strong attenuation of virulence in guinea pig and mouse models of systemic candidosis, which, in guinea pigs, could be attributed to a decreased ability to reach and/or adhere internal organs. Therefore, correct CaMnt1p-mediated O-linked mannosylation of proteins is critical for adhesion and virulence of C. albicans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic responses of the hearing organ to acoustic overstimulation were investigated using the guinea pig isolated temporal bone preparation. The organ was loaded with the fluorescent Ca2+ indicator Fluo-3, and the cochlear electric responses to low-level tones were recorded through a microelectrode in the scala media. After overstimulation, the amplitude of the cochlear potentials decreased significantly. In some cases, rapid recovery was seen with the potentials returning to their initial amplitude. In 12 of 14 cases in which overstimulation gave a decrease in the cochlear responses, significant elevations of the cytoplasmic [Ca2+] in the outer hair cells were seen. [Ca2+] increases appeared immediately after terminating the overstimulation, with partial recovery taking place in the ensuing 30 min in some preparations. Such [Ca2+] changes were not seen in preparations that were stimulated at levels that did not cause an amplitude change in the cochlear potentials. The overstimulation also gave rise to a contraction, evident as a decrease of the width of the organ of Corti. The average contraction in 10 preparations was 9 μm (SE 2 μm). Partial or complete recovery was seen within 30–45 min after the overstimulation. The [Ca2+] changes and the contraction are likely to produce major functional alterations and consequently are suggested to be a factor contributing strongly to the loss of function seen after exposure to loud sounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discrepancy between the structural longitudinal organization of the parallel-fiber system in the cerebellar cortex and the functional mosaic-like organization of the cortex has provoked controversial theories about the flow of information in the cerebellum. We address this issue by characterizing the spatiotemporal organization of neuronal activity in the cerebellar cortex by using optical imaging of voltage-sensitive dyes in isolated guinea-pig cerebellum. Parallel-fiber stimulation evoked a narrow beam of activity, which propagated along the parallel fibers. Stimulation of the mossy fibers elicited a circular, nonpropagating patch of synchronized activity. These results strongly support the hypothesis that a beam of parallel fibers, activated by a focal group of granule cells, fails to activate the Purkinje cells along most of its length. It is thus the ascending axon of the granule cell, and not its parallel branches, that activates and defines the basic functional modules of the cerebellar cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serological expression cloning of antigens eliciting a humoral immune response to a syngeneic mouse sarcoma identified pem (mouse placenta and embryonic expression gene) as a new member of the cancer/testis family. To identify the human homologue of pem, mouse pem sequences and pem-related expressed sequence tags from human testis were used as PCR primers for amplification using human testis cDNA. However, rather than pem, another gene, designated OY-TES-1, was isolated and found to be the human homologue of proacrosin binding protein sp32 precursor originally identified in mouse, guinea pig, and pig. OY-TES-1 maps to chromosome 12p12-p13 and contains 10 exons. Southern blot analysis suggests the presence of two OY-TES-1-related genes in the human genome. In normal tissues, OY-TES-1 mRNA was expressed only in testis, whereas in malignant tissues, a variable proportion of a wide array of cancers, including bladder, breast, lung, liver, and colon cancers, expressed OY-TES-1. Serological survey of 362 cancer patients with a range of different cancers showed antibody to OY-TES-1 in 25 patients. No OY-TES-1 sera reactivity was found in 20 normal individuals. These findings indicate that OY-TES-1 is an additional member of the cancer/testis family of antigens and that OY-TES-1 is immunogenic in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional mechanisms thought to underlie opioid tolerance include receptor phosphorylation/down-regulation, G-protein uncoupling, and adenylyl cyclase superactivation. A parallel line of investigation also indicates that opioid tolerance development results from a switch from predominantly opioid receptor Giα inhibitory to Gβγ stimulatory signaling. As described previously, this results, in part, from the increased relative abundance of Gβγ-stimulated adenylyl cyclase isoforms as well as from a profound increase in their phosphorylation [Chakrabarti, S., Rivera, M., Yan, S.-Z., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 655–662; Chakrabarti, S., Wang, L., Tang, W.-J. & Gintzler, A. R. (1998) Mol. Pharmacol. 54, 949–953]. The present study demonstrates that chronic morphine administration results in the concomitant phosphorylation of three key signaling proteins, G protein receptor kinase (GRK) 2/3, β-arrestin, and Gβ, in the guinea pig longitudinal muscle myenteric plexus tissue. Augmented phosphorylation of all three proteins is evident in immunoprecipitate obtained by using either anti-GRK2/3 or Gβ antibodies, but the phosphorylation increment is greater in immunoprecipitate obtained with Gβ antibodies. Analyses of coimmunoprecipitated proteins indicate that phosphorylation of GRK2/3, β-arrestin, and Gβ has varying consequences on their ability to associate. As a result, increased availability of and signaling via Gβγ could occur without compromising the membrane content (and presumably activity) of GRK2/3. Induction of the concomitant phosphorylation of multiple proteins in a multimolecular complex with attendant modulation of their association represents a novel mechanism for increasing Gβγ signaling and opioid tolerance formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48–72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, IKr, of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed IKr without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, IKs, without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed IKs and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Auditory cortical receptive field plasticity produced during behavioral learning may be considered to constitute "physiological memory" because it has major characteristics of behavioral memory: associativity, specificity, rapid acquisition, and long-term retention. To investigate basal forebrain mechanisms in receptive field plasticity, we paired a tone with stimulation of the nucleus basalis, the main subcortical source of cortical acetylcholine, in the adult guinea pig. Nucleus basalis stimulation produced electroencephalogram desynchronization that was blocked by systemic and cortical atropine. Paired tone/nucleus basalis stimulation, but not unpaired stimulation, induced receptive field plasticity similar to that produced by behavioral learning. Thus paired activation of the nucleus basalis is sufficient to induce receptive field plasticity, possibly via cholinergic actions in the cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Opiate alkaloids are potent analgesics that exert multiple pharmacological effects in the nervous system by activating G protein-coupled receptors. Receptor internalization upon stimulation may be important for desensitization and resensitization, which affect cellular responsiveness to ligands. Here, we investigated the agonist-induced internalization of the mu opioid receptor (MOR) in vivo by using the guinea pig ileum as a model system and immunohistochemistry with an affinity-purified antibody to the C terminus of rat MOR. Antibody specificity was confirmed by the positive staining of human embryonic kidney 293 cells transfected with epitope-tagged MOR cDNA, by the lack of staining of cells transfected with the delta or kappa receptor cDNA, and by the abolition of staining when the MOR antibody was preadsorbed with the MOR peptide fragment. Abundant MOR immunoreactivity (MOR-IR) was localized to the cell body, dendrites, and axonal processes of myenteric neurons. Immunostaining was primarily confined to the plasma membrane of cell bodies and processes. Within 15 min of an intraperitoneal injection of the opiate agonist etorphine, intense MOR-IR was present in vesicle-like structures, which were identified as endosomes by confocal microscopy. At 30 min, MOR-IR was throughout the cytoplasm and in perinuclear vesicles. MOR-IR was still internalized at 120 min. Agonist-induced endocytosis was completely inhibited by the opiate antagonist naloxone. Interestingly, morphine, a high-affinity MOR agonist, did not cause detectable internalization, but it partially inhibited the etorphine-induced MOR endocytosis. These results demonstrate the occurrence of agonist-selective MOR endocytosis in neurons naturally expressing this receptor in vivo and suggest the existence of different mechanisms regulating cellular responsiveness to ligands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A soluble form of Alzheimer disease amyloid beta-protein (sA beta) is transported in the blood and cerebrospinal fluid mainly complexed with apolipoprotein J (apoJ). Using a well-characterized in situ perfused guinea pig brain model, we recently obtained preliminary evidence that apoJ facilitates transport of sA beta (1-40)-apoJ complexes across the blood-brain barrier and the blood-cerebrospinal fluid barrier, but the mechanisms remain poorly understood. In the present study, we examined the transport process in greater detail and investigated the possible role of glycoprotein 330 (gp330)/megalin, a receptor for multiple ligands, including apoJ. High-affinity transport systems with a Km of 0.2 and 0.5 nM were demonstrated for apoJ at the blood-brain barrier and the choroid epithelium in vivo, suggesting a specific receptor-mediated mechanism. The sA beta (1-40)-apoJ complex shared the same transport mechanism and exhibited 2.4- to 10.2-fold higher affinity than apoJ itself. Binding to microvessels, transport into brain parenchyma, and choroidal uptake of both apoJ and sA beta (1-40)-apoJ complexes were markedly inhibited (74-99%) in the presence of a monoclonal antibody to gp330/megalin and were virtually abolished by perfusion with the receptor-associated protein, which blocks binding of all known ligands to gp330. Western blot analysis of cerebral microvessels with the monoclonal antibody to gp330 revealed a protein with a mass identical to that in extracts of kidney membranes enriched with gp330/megalin, but in much lower concentration. The findings suggest that gp330/megalin mediates cellular uptake and transport of apoJ and sA beta (1-40)-apoJ complex at the cerebral vascular endothelium and choroid epithelium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An expression-cloning strategy was used to isolate a cDNA that encodes a protein that confers calcitonin gene-related peptide (CGRP) responsiveness to Xenopus laevis oocytes. A guinea pig organ of Corti (the mammalian hearing organ) cDNA library was screened by using an assay based on the cystic fibrosis transmembrane conductance regulator (CFTR). The CFTR is a chloride channel that is activated upon phosphorylation; this channel activity was used as a sensor for CGRP-induced activation of intracellular kinases. A cDNA library from guinea pig organ of Corti was screened by using this oocyte-CFTR assay. A cDNA was identified that contained an open reading frame coding for a small hydrophilic protein that is presumed to be either a CGRP receptor or a component of a CGRP receptor complex. This CGRP receptor component protein confers CGRP-specific activation to the CFTR assay, as no activation was detected upon application of calcitonin, amylin, neuropeptide Y, vasoactive intestinal peptide, or beta-endorphin. In situ hybridization demonstrated that the CGRP receptor component protein is expressed in outer hair cells of the organ of Corti and is colocalized with CGRP-containing efferent nerve terminals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the ability of UV irradiation to induce pigmentation in vivo and in vitro is well documented, the intracellular signals that trigger this response are poorly understood. We have recently shown that increasing DNA repair after irradiation enhances UV-induced melanization. Moreover, addition of small DNA fragments, particularly thymine dinucleotides (pTpT), selected to mimic sequences excised during the repair of UV-induced DNA photoproducts, to unirradiated pigment cells in vitro or to guinea pig skin in vivo induces a pigment response indistinguishable from UV-induced tanning. Here we present further evidence that DNA damage and/or the repair of this damage increases melanization. (i) Treatment with the restriction enzyme Pvu II or the DNA-damaging chemical agents methyl methanesulfonate (MMS) or 4-nitroquinoline 1-oxide (4-NQO) produces a 4- to 10-fold increase in melanin content in Cloudman S91 murine melanoma cells and an up to 70% increase in normal human melanocytes, (ii) UV irradiation, MMS, and pTpT all upregulate the mRNA level for tyrosinase, the rate-limiting enzyme in melanin biosynthesis. (iii) Treatment with pTpT or MMS increases the response of S91 cells to melanocyte-stimulating hormone (MSH) and increases the binding of MSH to its cell surface receptor, as has been reported for UV irradiation. Together, these data suggest that UV-induced DNA damage and/or the repair of this damage is an important signal in the pigmentation response to UV irradiation. Because Pvu II acts exclusively on DNA and because MMS and 4-NQO, at the concentrations used, primarily interact with DNA, such a stimulus alone appears sufficient to induce melanogenesis. Of possible practical importance, the dinucleotide pTpT mimics most, if not all, of the effects of UV irradiation on pigmentation, tyrosinase mRNA regulation, and response to MSH without the requirement for antecedent DNA damage.