20 resultados para Freezing

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperate plants develop a greater ability to withstand freezing in response to a period of low but nonfreezing temperatures through a complex, adaptive process of cold acclimation. Very little is known about the signaling processes by which plants perceive the low temperature stimulus and transduce it into the nucleus to activate genes needed for increased freezing tolerance. To help understand the signaling processes, we have isolated mutants of Arabidopsis that are constitutively freezing-tolerant in the absence of cold acclimation. Freezing tolerance of wild-type Arabidopsis was increased from −5.5°C to −12.6°C by cold acclimation whereas the freezing tolerance of 26 mutant lines ranged from −6.8°C to −10.6°C in the absence of acclimation. Plants with mutations at the eskimo1 (esk1) locus accumulated high levels of proline, a compatible osmolyte, but did not exhibit constitutively increased expression of several cold-regulated genes involved in freezing tolerance. RNA gel blot analysis suggested that proline accumulation in esk1 plants was mediated by regulation of transcript levels of genes involved in proline synthesis and degradation. The characterization of esk1 mutants and results from other mutants suggest that distinct signaling pathways activate different aspects of cold acclimation and that activation of one pathway can result in considerable freezing tolerance without activation of other pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of x-ray reflectivity and grazing incidence x-ray diffraction studies of the liquid–vapor interface of a dilute alloy of Pb in Ga over the temperature range of 23–76°C. Our data show that the liquid–vapor interface of this alloy is stratified for several atomic diameters into the bulk liquid and that a monolayer of Pb forms the outermost stratum of the interface. Over the temperature range of 23–56°C, the monolayer of Pb is in an ordered hexagonal phase. At about 58°C, this monolayer undergoes a first-order transition to a hexatic phase, which remains stable to 76°C. An analogy between the observed transition and the first-order melting transition in a one-component classical plasma is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold acclimation in plants is associated with the expression of COR (cold-regulated) genes that encode polypeptides of unknown function. It has been widely speculated that products of these genes might have roles in freezing tolerance. Here we provide direct evidence in support of this hypothesis. We show that constitutive expression of COR15a, a cold-regulated gene of Arabidopsis thaliana that encodes a chloroplast-targeted polypeptide, enhances the in vivo freezing tolerance of chloroplasts in nonacclimated plants by almost 2°C, nearly one-third of the increase that occurs upon cold acclimation of wild-type plants. Significantly, constitutive expression of COR15a also affects the in vitro freezing tolerance of protoplasts. At temperatures between −5 and −8°C, the survival of protoplasts isolated from leaves of nonacclimated transgenic plants expressing COR15a was greater than that of protoplasts isolated from leaves of nonacclimated wild-type plants. At temperatures between −2 and −4°C, constitutive expression of COR15a had a slight negative effect on survival. The implications of these data regarding possible modes of COR15a action are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constitutive expression of the cold-regulated COR15a gene of Arabidopsis thaliana results in a significant increase in the survival of isolated protoplasts frozen over the range of −4.5 to −7°C. The increased freezing tolerance is the result of a decreased incidence of freeze-induced lamellar-to-hexagonal II phase transitions that occur in regions where the plasma membrane is brought into close apposition with the chloroplast envelope as a result of freeze-induced dehydration. Moreover, the mature polypeptide encoded by this gene, COR15am, increases the lamellar-to-hexagonal II phase transition temperature of dioleoylphosphatidylethanolamine and promotes formation of the lamellar phase in a lipid mixture composed of the major lipid species that comprise the chloroplast envelope. We propose that COR15am, which is located in the chloroplast stroma, defers freeze-induced formation of the hexagonal II phase to lower temperatures (lower hydrations) by altering the intrinsic curvature of the inner membrane of the chloroplast envelope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme (“green CPO”) displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22°C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = ½ ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this “quasi-native CPO,” which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence that lesions of the basolateral amygdala complex (BLC) impair memory for fear conditioning in rats, measured by lack of “freezing” behavior in the presence of cues previously paired with footshocks, has suggested that the BLC may be a critical locus for the memory of fear conditioning. However, evidence that BLC lesions may impair unlearned as well as conditioned freezing makes it difficult to interpret the findings of studies assessing conditioned fear with freezing. The present study investigated whether such lesions prevent the expression of several measures of memory for contextual fear conditioning in addition to freezing. On day 1, rats with sham lesions or BLC lesions explored a Y maze. The BLC-lesioned rats (BLC rats) displayed a greater exploratory activity. On day 2, each of the rats was placed in the “shock” arm of the maze, and all of the sham and half of the BLC rats received footshocks. A 24-hr retention test assessed the freezing, time spent per arm, entries per arm, and initial entry into the shock arm. As previously reported, shocked BLC rats displayed little freezing. However, the other measures indicated that the shocked BLC rats remembered the fear conditioning. They entered less readily and less often and spent less time in the shock arm than did the control nonshocked BLC rats. Compared with the sham rats, the shocked BLC rats entered more quickly and more often and spent more time in the shock arm. These findings indicate that an intact BLC is not essential for the formation and expression of long-term cognitive/explicit memory of contextual fear conditioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to improve behavioral memory, we devised a strategy to amplify the signal-to-noise ratio of the cAMP pathway, which plays a central role in hippocampal synaptic plasticity and behavioral memory. Multiple high-frequency trains of electrical stimulation induce long-lasting long-term potentiation, a form of synaptic strengthening in hippocampus that is greater in both magnitude and persistence than the short-lasting long-term potentiation generated by a single tetanic train. Studies using pharmacological inhibitors and genetic manipulations have shown that this difference in response depends on the activity of cAMP-dependent protein kinase A. Genetic studies have also indicated that protein kinase A and one of its target transcription factors, cAMP response element binding protein, are important in memory in vivo. These findings suggested that amplification of signals through the cAMP pathway might lower the threshold for generating long-lasting long-term potentiation and increase behavioral memory. We therefore examined the biochemical, physiological, and behavioral effects in mice of partial inhibition of a hippocampal cAMP phosphodiesterase. Concentrations of a type IV-specific phosphodiesterase inhibitor, rolipram, which had no significant effect on basal cAMP concentration, increased the cAMP response of hippocampal slices to stimulation with forskolin and induced persistent long-term potentiation in CA1 after a single tetanic train. In both young and aged mice, rolipram treatment before training increased long- but not short-term retention in freezing to context, a hippocampus-dependent memory task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CCAAT/enhancer binding protein δ (C/EBPδ) is a transcriptional regulator implicated in the hepatic acute phase response and in adipogenic and myeloid cell differentiation. We found that C/EBPδ is widely expressed in the peripheral and central nervous systems, including neurons of the hippocampal formation, indicating a role in neural functions. To examine the role of C/EBPδ in vivo, we generated mice with a targeted deletion of the C/EBPδ gene. This mutation does not interfere with normal embryonic and postnatal development. Performance in a battery of behavioral tests indicates that basic neurological functions are normal. Furthermore, performance in a Morris water maze task suggests that C/EBPδ mutant mice have normal spatial learning. However, in the contextual and auditory-cue-conditioned fear task, C/EBPδ null mice displayed significantly more conditioned freezing to the test context than did wild-type controls, but equivalent conditioning to the auditory cue. These data demonstrate a selectively enhanced contextual fear response in mice carrying a targeted genomic mutation and implicate C/EBPδ in the regulation of a specific type of learning and memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endogenous opioid system has been implicated in sexual behavior, palatable intake, fear, and anxiety. The present study examined whether ovariectomized female transgenic preproenkephalin-knockout (PPEKO) mice and their wild-type and heterozygous controls displayed alterations in fear and anxiety paradigms, sucrose intake, and lordotic behavior. To examine stability of responding, three squads of the genotypes were tested across seasons over a 20-month period. In a fear-conditioning paradigm, PPEKO mice significantly increased freezing to both fear and fear + shock stimuli relative to controls. In the open field, PPEKO mice spent significantly less time and traversed significantly less distance in the center of an open field than wild-type controls. Further, PPEKO mice spent significantly less time and tended to be less active on the light side of a dark–light chamber than controls, indicating that deletion of the enkephalin gene resulted in exaggerated responses to fear or anxiety-provoking environments. These selective deficits were observed consistently across testing squads spanning 20 months and different seasons. In contrast, PPEKO mice failed to differ from corresponding controls in sucrose, chow, or water intake across a range (0.0001–20%) of sucrose concentrations and failed to differ in either lordotic or female approach to male behaviors when primed with estradiol and progesterone, thereby arguing strongly for the selectivity of a fear and anxiety deficit which was not caused by generalized and nonspecific debilitation. These transgenic data strongly suggest that opioids, and particularly enkephalin gene products, are acting naturally to inhibit fear and anxiety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-Å resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an ɛ-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) similar to three pathogenesis-related proteins, a glucanase-like protein (GLP), a chitinase-like protein (CLP), and a thaumatin-like protein (TLP), accumulate during cold acclimation in winter rye (Secale cereale) leaves, where they are thought to modify the growth of intercellular ice during freezing. The objective of this study was to characterize the rye AFPs in their native forms, and our results show that these proteins form oligomeric complexes in vivo. Nine proteins were separated by native-polyacrylamide gel electrophoresis from apoplastic extracts of cold-acclimated winter rye leaves. Seven of these proteins exhibited multiple polypeptides when denatured and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After isolation of the individual proteins, six were shown by immunoblotting to contain various combinations of GLP, CLP, and TLP in addition to other unidentified proteins. Antisera produced against individual cold-induced winter rye GLP, CLP, and TLP all dramatically inhibited glucanase activity in apoplastic extracts from cold-acclimated winter rye leaves, and each antiserum precipitated all three proteins. These results indicate that each of the polypeptides may be exposed on the surface of the protein complexes. By forming oligomeric complexes, AFPs may form larger surfaces to interact with ice, or they may simply increase the mass of the protein bound to ice. In either case, the complexes of AFPs may inhibit ice growth and recrystallization more effectively than the individual polypeptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test the hypothesis that enhanced tolerance of oxidative stress would improve winter survival, two clones of alfalfa (Medicago sativa) were transformed with a Mn-superoxide dismutase (Mn-SOD) targeted to the mitochondria or to the chloroplast. Although Mn-SOD activity increased in most primary transgenic plants, both cytosolic and chloroplastic forms of Cu/Zn-SOD had lower activity in the chloroplast SOD transgenic plants than in the nontransgenic plants. In a field trial at Elora, Ontario, Canada, the survival and yield of 33 primary transgenic and control plants were compared. After one winter most transgenic plants had higher survival rates than control plants, with some at 100%. Similarly, some independent transgenic plants had twice the herbage yield of the control plants. Prescreening the transgenic plants for SOD activity, vigor, or freezing tolerance in the greenhouse was not effective in identifying individual transgenic plants with improved field performance. Freezing injury to leaf blades and fibrous roots, measured by electrolyte leakage from greenhouse-grown acclimated plants, indicated that the most tolerant were only 1°C more freezing-tolerant than alfalfa clone N4. There were no differences among transgenic and control plants for tetrazolium staining of field-grown plants at any freezing temperature. Therefore, although many of the transgenic plants had higher winter survival rates and herbage yield, there was no apparent difference in primary freezing injury, and therefore, the trait is not associated with a change in the primary site of freezing injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified two genes from Arabidopsis that show high similarity with CBF1, a gene encoding an AP2 domain-containing transcriptional activator that binds to the low-temperature-responsive element CCGAC and induces the expression of some cold-regulated genes, increasing plant freezing tolerance. These two genes, which we have named CBF2 and CBF3, also encode proteins containing AP2 DNA-binding motifs. Furthermore, like CBF1, CBF2 and CBF3 proteins also include putative nuclear-localization signals and potential acidic activation domains. The CBF2 and CBF3 genes are linked to CBF1, constituting a cluster on the bottom arm of chromosome IV. The high level of similarity among the three CBF genes, their tandem organization, and the fact that they have the same transcriptional orientation all suggest a common origin. CBF1, CBF2, and CBF3 show identical expression patterns, being induced very rapidly by low-temperature treatment. However, in contrast to most of the cold-induced plant genes characterized, they are not responsive to abscisic acid or dehydration. Taken together, all of these data suggest that CBF2 and CBF3 may function as transcriptional activators, controlling the level of low-temperature gene expression and promoting freezing tolerance through an abscisic acid-independent pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsomal ω-3 fatty acid desaturase catalyzes the conversion of 18:2 (linoleic acid) to 18:3 (α-linolenic acid) in phospholipids, which are the main constituents of extrachloroplast membranes. Transgenic tobacco (Nicotiana tabacum) plants with increased 18:3 contents (designated SIIn plants) were produced through the introduction of a construct with the tobacco microsomal ω-3 fatty acid desaturase gene under the control of the highly efficient promoter containing the E12Ω sequence. 18:3 contents in the SIIn plants were increased by about 40% in roots and by about 10% in leaves compared with the control plants. With regard to growth at 15°C and 25°C and the ability to tolerate chilling at 1°C and 5°C, there were no discernible differences between the SIIn and the control plants. Freezing tolerance in leaves and roots, which was assessed by electrolyte leakage, was almost the same between the SIIn and the control plants. The fluidity of plasma membrane from the SIIn plants was almost the same as that of the control plants. These results indicate that an increase in the 18:3 level in phospholipids is not directly involved in compensation for the diminishment in growth or membrane properties observed under low temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissues expressing mRNAs of three cold-induced genes, blt101, blt14, and blt4.9, and a control gene, elongation factor 1α, were identified in the crown and immature leaves of cultivated barley (Hordeum vulgare L. cv Igri). Hardiness and tissue damage were assessed. blt101 and blt4.9 mRNAs were not detected in control plants; blt14 was expressed in control plants but only in the inner layers of the crown cortex. blt101 was expressed in many tissues of cold-acclimated plants but most strongly in the vascular-transition zone of the crown; blt14 was expressed only in the inner layers of the cortex and in cell layers partly surrounding vascular bundles in the vascular-transition zone; expression of blt4.9, which codes for a nonspecific lipid-transfer protein, was confined to the epidermis of the leaf and to the epidermis of the older parts of the crown. None of the cold-induced genes was expressed in the tunica, although the control gene was most strongly expressed there. Thus, the molecular aspects of acclimation differed markedly between tissues. Damage in the vascular-transition zone of the crown correlated closely with plant survival. Therefore, the strong expression of blt101 and blt14 in this zone may indicate a direct role in freezing tolerance of the crown.