16 resultados para EPR

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EPR spectra of spin-labeled lipid chains in fully hydrated bilayer membranes of dimyristoyl phosphatidylcholine containing 40 mol % of cholesterol have been studied in the liquid-ordered phase at a microwave radiation frequency of 94 GHz. At such high field strengths, the spectra should be optimally sensitive to lateral chain ordering that is expected in the formation of in-plane domains. The high-field EPR spectra from random dispersions of the cholesterol-containing membranes display very little axial averaging of the nitroxide g-tensor anisotropy for lipids spin labeled toward the carboxyl end of the sn-2 chain (down to the 8-C atom). For these positions of labeling, anisotropic 14N-hyperfine splittings are resolved in the gzz and gyy regions of the nonaxial EPR spectra. For positions of labeling further down the lipid chain, toward the terminal methyl group, the axial averaging of the spectral features systematically increases and is complete at the 14-C atom position. Concomitantly, the time-averaged 〈Azz〉 element of the 14N-hyperfine tensor decreases, indicating that the axial rotation at the terminal methyl end of the chains arises from correlated torsional motions about the bonds of the chain backbone, the dynamics of which also give rise to a differential line broadening of the 14N-hyperfine manifolds in the gzz region of the spectrum. These results provide an indication of the way in which lateral ordering of lipid chains in membranes is induced by cholesterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron paramagnetic resonance (EPR) spectroscopy at 94 GHz is used to study the dark-stable tyrosine radical Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} in single crystals of photosystem II core complexes (cc) isolated from the thermophilic cyanobacterium Synechococcus elongatus. These complexes contain at least 17 subunits, including the water-oxidizing complex (WOC), and 32 chlorophyll a molecules/PS II; they are active in light-induced electron transfer and water oxidation. The crystals belong to the orthorhombic space group P212121, with four PS II dimers per unit cell. High-frequency EPR is used for enhancing the sensitivity of experiments performed on small single crystals as well as for increasing the spectral resolution of the g tensor components and of the different crystal sites. Magnitude and orientation of the g tensor of Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} and related information on several proton hyperfine tensors are deduced from analysis of angular-dependent EPR spectra. The precise orientation of tyrosine Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} in PS II is obtained as a first step in the EPR characterization of paramagnetic species in these single crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two regioisomers with C3 or D3 symmetry of water-soluble carboxylic acid C60 derivatives, containing three malonic acid groups per molecule, were synthesized and found to be equipotent free radical scavengers in solution as assessed by EPR analysis. Both compounds also inhibited the excitotoxic death of cultured cortical neurons induced by exposure to N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or oxygen-glucose deprivation, but the C3 regioisomer was more effective than the D3 regioisomer, possibly reflecting its polar nature and attendant greater ability to enter lipid membranes. At 100 μM, the C3 derivative fully blocked even rapidly triggered, NMDA receptor-mediated toxicity, a form of toxicity with limited sensitivity to all other classes of free radical scavengers we have tested. The C3 derivative also reduced apoptotic neuronal death induced by either serum deprivation or exposure to Aβ1–42 protein. Furthermore, continuous infusion of the C3 derivative in a transgenic mouse carrying the human mutant (G93A) superoxide dismutase gene responsible for a form of familial amyotrophic lateral sclerosis, delayed both death and functional deterioration. These data suggest that polar carboxylic acid C60 derivatives may have attractive therapeutic properties in several acute or chronic neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme (“green CPO”) displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22°C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = ½ ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this “quasi-native CPO,” which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the use of site-directed mutagenesis and chemical rescue, we have identified the proton acceptor for redox-active tyrosine D in photosystem II (PSII). Effects of chemical rescue on the tyrosyl radical were monitored by EPR spectroscopy. We also have acquired the Fourier–transform infrared (FT-IR) spectrum associated with the oxidation of tyrosine D and concomitant protonation of the acceptor. Mutant and isotopically labeled PSII samples are used to assign vibrational lines in the 3,600–3,100 cm−1 region to N-H modes of His-189 in the D2 polypeptide. When His-189 in D2 is changed to a leucine (HL189D2) in PSII, dramatic alterations of both EPR and FT-IR spectra are observed. When imidazole is introduced into HL189D2 samples, results from both EPR and FT-IR spectroscopy argue that imidazole is functionally reconstituted into an accessible pocket and that imidazole acts as a chemical mimic for His-189. Small perturbations of EPR and FT-IR spectra are consistent with access to this pocket in wild-type PSII, as well. Structures of the analogous site in bacterial reaction centers suggest that an accessible pocket, large enough to contain imidazole, is bordered by tyrosine D and His-189 in the D2 polypeptide. These data provide evidence that His-189 in the D2 polypeptide of PSII acts as a proton acceptor for redox-active tyrosine D and that proton transfer to the imidazole ring facilitates the efficient oxidation/reduction of tyrosine D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although nitric oxide synthase (NOS) is widely considered as the major source of NO in biological cells and tissues, direct evidence demonstrating NO formation from the purified enzyme has been lacking. It was recently reported that NOS does not synthesize NO, but rather generates nitroxyl anion (NO−) that is subsequently converted to NO by superoxide dismutase (SOD). To determine if NOS synthesizes NO, electron paramagnetic resonance (EPR) spectroscopy was applied to directly measure NO formation from purified neuronal NOS. In the presence of the NO trap Fe2+-N-methyl-d-glucamine dithiocarbamate, NO gives rise to characteristic EPR signals with g = 2.04 and aN = 12.7 G, whereas NO− is undetectable. In the presence of l-arginine (l-Arg) and cofactors, NOS generated prominent NO signals. This NO generation did not require SOD, and it was blocked by the specific NOS inhibitor N-nitro-l-arginine methyl ester. Isotope-labeling experiments with l-[15N]Arg further demonstrated that NOS-catalyzed NO arose from the guanidino nitrogen of l-Arg. Measurement of the time course of NO formation demonstrated that it paralleled that of l-citrulline. The conditions used in the prior study were shown to result in potent superoxide generation, and this may explain the failure to measure NO formation in the absence of SOD. These experiments provide unequivocal evidence that NOS does directly synthesize NO from l-Arg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 16-amino acid residue peptide derived from a consensus motif of natural ferredoxins incorporates a tetranuclear iron sulfur cluster under physiological conditions. Successful assembly of the [4Fe–4S]2+/1+ cluster within a monomeric peptide was demonstrated using size exclusion chromatography, UV-visible, visible CD, and cryogenic EPR spectroscopies. The robustness of [4Fe–4S]2+/1+ formation was tested using peptides with either the ligating cysteine exchanged for alanine or with the intervening amino acids replaced by glycine. The small size of the peptide allows for modular incorporation into more complex protein structures. In one larger structure, we describe a tetra-α-helix bundle that self-assembles both iron–sulfur clusters and hemes, thereby demonstrating feasibility for the general synthesis of maquettes containing multiple, juxtaposed redox cofactors. This is a motif common to the catalytic sites of native oxidoreductases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to Khan et al. [Khan, A. U., Kovacic, D., Kolbanovskiy, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], peroxynitrite (ONOO−) decomposes after protonation to singlet oxygen (1ΔgO2) and singlet oxonitrate (nitroxyl, 1NO−) in high yield. They claimed to have observed nitrosyl hemoglobin from the reaction of NO− with methemoglobin; however, contamination with hydrogen peroxide gave rise to ferryl hemoglobin, the spectrum of which was mistakenly assigned to nitrosyl hemoglobin. We have carried out UV–visible and EPR experiments with methemoglobin and hydrogen peroxide-free peroxynitrite and find that no NO− is formed. With this peroxynitrite preparation, no light emission from singlet oxygen at 1270 nm is observed, nor is singlet oxygen chemically trapped; however, singlet oxygen was trapped when hydrogen peroxide was also present, as previously described [Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K. & Sies, H. (1994) FEBS Lett. 355, 287–289]. Quantum mechanical and thermodynamic calculations show that formation of the postulated intermediate, a cyclic form of peroxynitrous acid (trioxazetidine), and the products 1NO− and 1ΔgO2 requires Gibbs energies of ca. +415 kJ⋅mol−1 and ca. +180 kJ⋅mol−1, respectively. Our results show that the results of Khan et al. are best explained by interference from contaminating hydrogen peroxide left from the synthesis of peroxynitrite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of initial activities of carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum show that CODH is mostly inactive at redox potentials higher than −300 mV. Initial activities measured at a wide range of redox potentials (0–500 mV) fit a function corresponding to the Nernst equation with a midpoint potential of −316 mV. Previously, extensive EPR studies of CODH have suggested that CODH has three distinct redox states: (i) a spin-coupled state at −60 to −300 mV that gives rise to an EPR signal termed Cred1; (ii) uncoupled states at <−320 mV in the absence of CO2 referred to as Cunc; and (iii) another spin-coupled state at <−320 mV in the presence of CO2 that gives rise to an EPR signal termed Cred2B. Because there is no initial CODH activity at potentials that give rise to Cred1, the state (Cred1) is not involved in the catalytic mechanism of this enzyme. At potentials more positive than −380 mV, CODH recovers its full activity over time when incubated with CO. This reductant-dependent conversion of CODH from an inactive to an active form is referred to hereafter as “autocatalysis.” Analyses of the autocatalytic activation process of CODH suggest that the autocatalysis is initiated by a small fraction of activated CODH; the small fraction of active CODH catalyzes CO oxidation and consequently lowers the redox potential of the assay system. This process is accelerated with time because of accumulation of the active enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mn K-edge x-ray absorption spectra for the pure S states of the tetranuclear Mn cluster of the oxygen-evolving complex of photosystem II during flash-induced S-state cycling have been determined. The relative S-state populations in samples given 0, 1, 2, 3, 4, or 5 flashes were determined from fitting the flash-induced electron paramagnetic resonance (EPR) multiline signal oscillation pattern to the Kok model. The edge spectra of samples given 0, 1, 2, or 3 flashes were combined with EPR information to calculate the pure S-state edge spectra. The edge positions (defined as the zero-crossing of the second derivatives) are 6550.1, 6551.7, 6553.5, and 6553.8 eV for S0, S1, S2, and S3, respectively. In addition to the shift in edge position, the S0--> S1 and S1--> S2 transitions are accompanied by characteristic changes in the shape of the edge, both indicative of Mn oxidation. The edge position shifts very little (0.3 eV) for the S2--> S3 transition, and the edge shape shows only subtle changes. We conclude that probably no direct Mn oxidation is involved in this transition. The proposed Mn oxidation state assignments are as follows: S0 (II, III, IV, IV) or (III, III, III, IV), S1 (III, III, IV, IV), S2 (III, IV, IV, IV), S3 (III, IV, IV, IV).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A protein analog of a purple copper center has been constructed from a recombinant blue copper protein (Pseudomonas aeruginosa azurin) by replacing the loop containing the three ligands to the blue copper center with the corresponding loop of the CuA center in cytochrome c oxidase (COX) from Paracoccus denitrificans. The electronic absorption in the UV and visible region (UV-vis) and electron paramagnetic resonance (EPR) spectra of this analog are remarkably similar to those of the native CuA center in COX from Paracoccus denitrificans. The above spectra can be obtained upon addition of a mixture of Cu2+ and Cu+. Addition of Cu2+ only results in a UV-vis spectrum consisting of absorptions from both a purple copper center and a blue copper center. This spectrum can be converted to the spectrum of a pure purple copper by a prolonged incubation in the air, or by addition of excess ascorbate. The azurin mutant reported here is an example of an engineered purple copper center with the A480/A530 ratio greater than 1 and with no detectable hyperfines, similar to those of the CuA sites in COX of bovine heart and of Paracoccus denitrificans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron spin echo electron-nuclear double resonance (ESE-ENDOR) experiments performed on a broad radical electron paramagnetic resonance (EPR) signal observed in photosystem II particles depleted of Ca2+ indicate that this signal arises from the redox-active tyrosine YZ. The tyrosine EPR signal width is increased relative to that observed in a manganese-depleted preparation due to a magnetic interaction between the photosystem II manganese cluster and the tyrosine radical. The manganese cluster is located asymmetrically with respect to the symmetry-related tyrosines YZ and YD. The distance between the YZ tyrosine and the manganese cluster is estimated to be approximately 4.5 A. Due to this close proximity of the Mn cluster and the redox-active tyrosine YZ, we propose that this tyrosine abstracts protons from substrate water bound to the Mn cluster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An EPR "spectroscopic ruler" was developed using a series of alpha-helical polypeptides, each modified with two nitroxide spin labels. The EPR line broadening due to electron-electron dipolar interactions in the frozen state was determined using the Fourier deconvolution method. These dipolar spectra were then used to estimate the distances between the two nitroxides separated by 8-25 A. Results agreed well with a simple alpha-helical model. The standard deviation from the model system was 0.9 A in the range of 8-25 A. This technique is applicable to complex systems such as membrane receptors and channels, which are difficult to access with high-resolution NMR or x-ray crystallography, and is expected to be particularly useful for systems for which optical methods are hampered by the presence of light-interfering membranes or chromophores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light-induced radical pairs in deuterated and deuterated plus 15N-substituted Synechococcus lividus cyanobacteria have been studied by transient EPR following pulsed laser excitation. Nuclear quantum beats are observed in the transverse electron magnetization at lower temperatures. Model calculations for the time profiles, evaluated at the high-field emissive maximum of the spectrum, indicate assignment of these coherences to nitrogen nuclei in the primary donor. Thorough investigation of the nuclear modulation patterns can provide detailed information on the electronic structure of the primary donor, providing insight into the mechanism of the primary events of plant photosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.