148 resultados para Dna-sequence

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linked polyamides bind in the minor groove of double-stranded DNA in a partially sequence-specific manner. This report analyzes the theoretical limits of DNA sequence discrimination by linked polyamides composed of two to four different types of heterocyclic rings, determining (i) the optimal choice of base-binding specificity for each ring and (ii) the optimal design for a polyamide composed of these rings to target a given DNA sequence and designed to maximize the fraction of the total polyamide binding to the specified target sequence relative to all other sequences. The results show that, fortuitously, polyamides composed of pyrrole, a naturally occurring G-excluding element, and imidazole, a rationally designed G-favoring element, have features similar to the theoretical optimum design for polyamides composed of two different rings. The results also show that, in polyamides composed of two or three types of heterocyclic rings, choosing a nonspecific “placeholder” ring, which binds equally strongly to each of the four bases, along with one or two base-specific rings will often enhance sequence specificity over a polyamide composed entirely of base-specific rings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current evidence on the long-term evolutionary effect of insertion of sequence elements into gene regions is reviewed, restricted to cases where a sequence derived from a past insertion participates in the regulation of expression of a useful gene. Ten such examples in eukaryotes demonstrate that segments of repetitive DNA or mobile elements have been inserted in the past in gene regions, have been preserved, sometimes modified by selection, and now affect control of transcription of the adjacent gene. Included are only examples in which transcription control was modified by the insert. Several cases in which merely transcription initiation occurred in the insert were set aside. Two of the examples involved the long terminal repeats of mammalian endogenous retroviruses. Another two examples were control of transcription by repeated sequence inserts in sea urchin genomes. There are now six published examples in which Alu sequences were inserted long ago into human gene regions, were modified, and now are central in control/enhancement of transcription. The number of published examples of Alu sequences affecting gene control has grown threefold in the last year and is likely to continue growing. Taken together, all of these examples show that the insertion of sequence elements in the genome has been a significant source of regulatory variation in evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hairpin polyamides are synthetic ligands for sequence-specific recognition in the minor groove of double-helical DNA. A thermodynamic characterization of the DNA-binding properties exhibited by a six-ring hairpin polyamide, ImPyPy-gamma-PyPyPy-beta-Dp (where Im = imidazole, Py = pyrrole, gamma = gamma-aminobutyric acid, beta = beta-alanine, and Dp = dimethylaminopropylamide), reveals an approximately 1-2 kcal/mol greater affinity for the designated match site, 5'-TGTTA-3', relative to the single base pair mismatch sites, 5'-TGGTA-3' and 5'-TATTA-3'. The enthalpy and entropy data at 20 degrees C reveal this sequence specificity to be entirely enthalpic in origin. Correlations between the thermodynamic driving forces underlying the sequence specificity exhibited by ImPyPy-gamma-PyPyPy-beta-Dp and the structural properties of the heterodimeric complex of PyPyPy and ImPyPy bound to the minor groove of DNA provide insight into the molecular forces that govern the affinity and specificity of pyrrole-imidazole polyamides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA was extracted from the extinct American mastodon, the extinct woolly mammoth, and the modern Asian and African elephants to test the traditional morphologically based phylogeny within Elephantidae. Phylogenetic analyses of the aligned sequences of the mitochondrial gene cytochrome b support a monophyletic Asian elephant-woolly mammoth clade when the American mastodon is used as an outgroup. Previous molecular studies were unable to resolve the relationships of the woolly mammoth, Asian elephant, and African elephant because the sequences appear to have evolved at heterogeneous rates and inappropriate outgroups were used for analysis. The results demonstrate the usefulness of fossil molecular data from appropriate sister taxa for resolving phylogenies of highly derived or early radiating lineages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plant lignan, 3'-O-methyl nordihydroguaiaretic acid (3'-O-methyl NDGA, denoted Malachi 4:5-6 or Mal.4; molecular weigth 316), was isolated from Larrea tridentata and found to be able to inhibit human immunodeficiency virus (HIV) Tat-regulated transactivation in vivo, induce protection of lymphoblastoid CEM-SS cells from HIV (strain IIIB) killing, and suppress the replication of five HIV-1 strains (WM, MN, VS, JR-CSF, and IIIB) in mitogen-stimulated peripheral blood mononuclear cells, all in a dose-dependent manner. Mal.4 inhibits both basal transcription and Tat-regulated transactivation in vitro. The target of Mal.4 has been localized to nucleotides -87 to -40 of the HIV long terminal repeat. Mal.4 directly and specifically interferes with the binding of Sp1 to Sp1 sites in the HIV long terminal repeat. By inhibiting proviral expression, Mal.4 may be able to interrupt the life cycles of both wild-type and reverse transcriptase or protease mutant viruses in HIV-infected patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mouse p53 protein generated by alternative splicing (p53as) has amino acid substitutions at its C terminus that result in constitutively active sequence-specific DNA binding (active form), whereas p53 protein itself binds inefficiently (latent form) unless activated by C-terminal modification. Exogenous p53as expression activated transcription of reporter plasmids containing p53 binding sequences and inhibited growth of mouse and human cells lacking functional endogenous p53. Inducible p53as in stably transfected p53 null fibroblasts increased p21WAF1/Cip-1/Sdi and decreased bcl-2 protein steady-state levels. Endogenous p53as and p53 proteins differed in response to cellular DNA damage. p53 protein was induced transiently in normal keratinocytes and fibroblasts whereas p53as protein accumulation was sustained in parallel with induction of p21WAF1/Cip-1/Sdi protein and mRNA, in support of p53as transcriptional activity. Endogenous p53 and p53as proteins in epidermal tumor cells responded to DNA damage with different kinetics of nuclear accumulation and efficiencies of binding to a p53 consensus DNA sequence. A model is proposed in which C-terminally distinct p53 protein forms specialize in functions, with latent p53 forms primarily for rapid non-sequence-specific binding to sites of DNA damage and active p53 forms for sustained regulation of transcription and growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have devised a combinatorial method, restriction endonuclease protection selection and amplification (REPSA), to identify consensus ligand binding sequences in DNA. In this technique, cleavage by a type IIS restriction endonuclease (an enzyme that cleaves DNA at a site distal from its recognition sequence) is prevented by a bound ligand while unbound DNA is cleaved. Since the selection step of REPSA is performed in solution under mild conditions, this approach is amenable to the investigation of ligand-DNA complexes that are either insufficiently stable or not readily separable by other methods. Here we report the use of REPSA to identify the consensus duplex DNA sequence recognized by a G/T-rich oligodeoxyribonucleotide under conditions favoring purine-motif triple-helix formation. Analysis of 47 sequences indicated that recognition between 13 bases on the oligonucleotide 3' end and the duplex DNA was sufficient for triplex formation and indicated the possible existence of a new base triplet, G.AT. This information should help identify appropriate target sequences for purine-motif triplex formation and demonstrates the power of REPSA for investigating ligand-DNA interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Azotobacter vinelandii, deletion of the fdxA gene that encodes a well characterized seven-iron ferredoxin (FdI) is known to lead to overexpression of the FdI redox partner, NADPH:ferredoxin reductase (FPR). Previous studies have established that this is an oxidative stress response in which the fpr gene is transcriptionally activated to the same extent in response to either addition of the superoxide propagator paraquat to the cells or to fdxA deletion. In both cases, the activation occurs through a specific DNA sequence located upstream of the fpr gene. Here, we report the identification of the A. vinelandii protein that binds specifically to the paraquat activatable fpr promoter region as the E1 subunit of the pyruvate dehydrogenase complex (PDHE1), a central enzyme in aerobic respiration. Sequence analysis shows that PDHE1, which was not previously suspected to be a DNA-binding protein, has a helix–turn–helix motif. The data presented here further show that FdI binds specifically to the DNA-bound PDHE1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although polyomavirus JC (JCV) is the proven pathogen of progressive multifocal leukoencephalopathy, the fatal demyelinating disease, this virus is ubiquitous as a usually harmless symbiote among human beings. JCV propagates in the adult kidney and excretes its progeny in urine, from which JCV DNA can readily be recovered. The main mode of transmission of JCV is from parents to children through long cohabitation. In this study, we collected a substantial number of urine samples from native inhabitants of 34 countries in Europe, Africa, and Asia. A 610-bp segment of JCV DNA was amplified from each urine sample, and its DNA sequence was determined. A worldwide phylogenetic tree subsequently constructed revealed the presence of nine subtypes including minor ones. Five subtypes (EU, Af2, B1, SC, and CY) occupied rather large territories that overlapped with each other at their boundaries. The entire Europe, northern Africa, and western Asia were the domain of EU, whereas the domain of Af2 included nearly all of Africa and southwestern Asia all the way to the northeastern edge of India. Partially overlapping domains in Asia were occupied by subtypes B1, SC, and CY. Of particular interest was the recovery of JCV subtypes in a pocket or pockets that were separated by great geographic distances from the main domains of those subtypes. Certain of these pockets can readily be explained by recent migrations of human populations carrying these subtypes. Overall, it appears that JCV genotyping promises to reveal previously unknown human migration routes: ancient as well as recent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have examined the effects on transcription initiation of promoter and enhancer strength and of the curvature of the DNA separating these entities on wild-type and mutated enhancer–promoter regions at the Escherichia coli σ54-dependent promoters glnAp2 and glnHp2 on supercoiled and linear DNA. Our results, together with previously reported observations by other investigators, show that the initiation of transcription on linear DNA requires a single intrinsic or induced bend in the DNA, as well as a promoter with high affinity for σ54-RNA polymerase, but on supercoiled DNA requires either such a bend or a high affinity promoter but not both. The examination of the DNA sequence of all nif gene activator- or nitrogen regulator I-σ54 promoters reveals that those lacking a binding site for the integration host factor have an intrinsic single bend in the DNA separating enhancer from promoter.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Speciation involves the establishment of genetic barriers between closely related organisms. The extent of genetic recombination is a key determinant and a measure of genetic isolation. The results reported here reveal that genetic barriers can be established, eliminated, or modified by manipulating two systems which control genetic recombination, SOS and mismatch repair. The extent of genetic isolation between enterobacteria is a simple mathematical function of DNA sequence divergence. The function does not depend on hybrid DNA stability, but rather on the number of blocks of sequences identical in the two mating partners and sufficiently large to allow the initiation of recombination. Further, there is no obvious discontinuity in the function that could be used to define a level of divergence for distinguishing species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have used two monovalent phage display libraries containing variants of the Zif268 DNA-binding domain to obtain families of zinc fingers that bind to alterations in the last 4 bp of the DNA sequence of the Zif268 consensus operator, GCG TGGGCG. Affinity selection was performed by altering the Zif268 operator three base pairs at a time, and simultaneously selecting for sets of 16 related DNA sequences. In this way, only four experiments were required to select for all possible 64 combinations of DNA triplet sequences. The results show that (i) for high-affinity DNA binding in the range observed for the Zif268 wild-type complex (Kd = 0.5–5 nM), finger 1 specifically requires the arginine at the carboxy terminus of its recognition helix that forms a bidentate hydrogen-bond with the guanine base (G) in the crystal structure of Zif268 complexed to its DNA operator sequence GCG TGG GCG; (ii) when the guanine base (G) is replaced by A, C, or T, a lower-affinity family (Kd ⩾ 50 nM) can be detected that shows an overall tendency to bind G-rich DNA; (iii) the residues at position 2 on the finger 2 recognition helix do not appear to interact strongly with the complementary 5′ base in the finger 1 binding site; and (iv) unexpected substitutions at the amino terminus of finger 1 can occasionally result in specificity for the 3′ base in the finger 1 binding site. A DNA recognition directory was constructed for high-affinity zinc fingers that recognize all three bases in a DNA triplet for seven sequences of the type GNN. Similar approaches may be applied to other zinc fingers to broaden the scope of the directory.