8 resultados para Divergence times

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent study of the divergence times of the major groups of organisms as gauged by amino acid sequence comparison has been expanded and the data have been reanalyzed with a distance measure that corrects for both constraints on amino acid interchange and variation in substitution rate at different sites. Beyond that, the availability of complete genome sequences for several eubacteria and an archaebacterium has had a great impact on the interpretation of certain aspects of the data. Thus, the majority of the archaebacterial sequences are not consistent with currently accepted views of the Tree of Life which cluster the archaebacteria with eukaryotes. Instead, they are either outliers or mixed in with eubacterial orthologs. The simplest resolution of the problem is to postulate that many of these sequences were carried into eukaryotes by early eubacterial endosymbionts about 2 billion years ago, only very shortly after or even coincident with the divergence of eukaryotes and archaebacteria. The strong resemblances of these same enzymes among the major eubacterial groups suggest that the cyanobacteria and Gram-positive and Gram-negative eubacteria also diverged at about this same time, whereas the much greater differences between archaebacterial and eubacterial sequences indicate these two groups may have diverged between 3 and 4 billion years ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a method to estimate by maximum likelihood the divergence time between two populations, specifically designed for the analysis of nonrecurrent rare mutations. Given the rapidly growing amount of data, rare disease mutations affecting humans seem the most suitable candidates for this method. The estimator RD, and its conditional version RDc, were derived, assuming that the population dynamics of rare alleles can be described by using a birth–death process approximation and that each mutation arose before the split of a common ancestral population into the two diverging populations. The RD estimator seems more suitable for large sample sizes and few alleles, whose age can be approximated, whereas the RDc estimator appears preferable when this is not the case. When applied to three cystic fibrosis mutations, the estimator RD could not exclude a very recent time of divergence among three Mediterranean populations. On the other hand, the divergence time between these populations and the Danish population was estimated to be, on the average, 4,500 or 15,000 years, assuming or not a selective advantage for cystic fibrosis carriers, respectively. Confidence intervals are large, however, and can probably be reduced only by analyzing more alleles or loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When many protein sequences are available for estimating the time of divergence between two species, it is customary to estimate the time for each protein separately and then use the average for all proteins as the final estimate. However, it can be shown that this estimate generally has an upward bias, and that an unbiased estimate is obtained by using distances based on concatenated sequences. We have shown that two concatenation-based distances, i.e., average gamma distance weighted with sequence length (d2) and multiprotein gamma distance (d3), generally give more satisfactory results than other concatenation-based distances. Using these two distance measures for 104 protein sequences, we estimated the time of divergence between mice and rats to be approximately 33 million years ago. Similarly, the time of divergence between humans and rodents was estimated to be approximately 96 million years ago. We also investigated the dependency of time estimates on statistical methods and various assumptions made by using sequence data from eubacteria, protists, plants, fungi, and animals. Our best estimates of the times of divergence between eubacteria and eukaryotes, between protists and other eukaryotes, and between plants, fungi, and animals were 3, 1.7, and 1.3 billion years ago, respectively. However, estimates of ancient divergence times are subject to a substantial amount of error caused by uncertainty of the molecular clock, horizontal gene transfer, errors in sequence alignments, etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular studies have the potential to shed light on the origin of the animal phyla by providing independent estimates of the divergence times, but have been criticized for failing to account adequately for variation in rate of evolution. A method of dating divergence times from molecular data addresses the criticisms of earlier studies and provides more realistic, but wider, confidence intervals. The data are not compatible with the Cambrian explosion hypothesis as an explanation for the origin of metazoan phyla, and provide additional support for an extended period of Precambrian metazoan diversification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hypothesis of the molecular evolutionary clock asserts that informational macromolecules (i.e., proteins and nucleic acids) evolve at rates that are constant through time and for different lineages. The clock hypothesis has been extremely powerful for determining evolutionary events of the remote past for which the fossil and other evidence is lacking or insufficient. I review the evolution of two genes, Gpdh and Sod. In fruit flies, the encoded glycerol-3-phosphate dehydrogenase (GPDH) protein evolves at a rate of 1.1 × 10−10 amino acid replacements per site per year when Drosophila species are compared that diverged within the last 55 million years (My), but a much faster rate of ≈4.5 × 10−10 replacements per site per year when comparisons are made between mammals (≈70 My) or Dipteran families (≈100 My), animal phyla (≈650 My), or multicellular kingdoms (≈1100 My). The rate of superoxide dismutase (SOD) evolution is very fast between Drosophila species (16.2 × 10−10 replacements per site per year) and remains the same between mammals (17.2) or Dipteran families (15.9), but it becomes much slower between animal phyla (5.3) and still slower between the three kingdoms (3.3). If we assume a molecular clock and use the Drosophila rate for estimating the divergence of remote organisms, GPDH yields estimates of 2,500 My for the divergence between the animal phyla (occurred ≈650 My) and 3,990 My for the divergence of the kingdoms (occurred ≈1,100 My). At the other extreme, SOD yields divergence times of 211 My and 224 My for the animal phyla and the kingdoms, respectively. It remains unsettled how often proteins evolve in such erratic fashion as GPDH and SOD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The determination of complete genome sequences provides us with an opportunity to describe and analyze evolution at the comprehensive level of genomes. Here we compare nine genomes with respect to their protein coding genes at two levels: (i) we compare genomes as “bags of genes” and measure the fraction of orthologs shared between genomes and (ii) we quantify correlations between genes with respect to their relative positions in genomes. Distances between the genomes are related to their divergence times, measured as the number of amino acid substitutions per site in a set of 34 orthologous genes that are shared among all the genomes compared. We establish a hierarchy of rates at which genomes have changed during evolution. Protein sequence identity is the most conserved, followed by the complement of genes within the genome. Next is the degree of conservation of the order of genes, whereas gene regulation appears to evolve at the highest rate. Finally, we show that some genomes are more highly organized than others: they show a higher degree of the clustering of genes that have orthologs in other genomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram, and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28–33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce a new genetic distance for microsatellite loci, incorporating features of the stepwise mutation model, and test its performance on microsatellite polymorphisms in humans, chimpanzees, and gorillas. We find that it performs well in determining the relations among the primates, but less well than other distance measures (not based on the stepwise mutation model) in determining the relations among closely related human populations. However, the deepest split in the human phylogeny seems to be accurately reconstructed by the new distance and separates African and non-African populations. The new distance is independent of population size and therefore allows direct estimation of divergence times if the mutation rate is known. Based on 30 microsatellite polymorphisms and a recently reported average mutation rate of 5.6 x 10(-4) at 15 dinucleotide microsatellites, we estimate that the deepest split in the human phylogeny occurred about 156,000 years ago. Unlike most previous estimates, ours requires no external calibration of the rate of molecular evolution. We can use such calibrations, however, to test our estimate.