12 resultados para Disease Models, Animal

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48–72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, IKr, of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed IKr without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, IKs, without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed IKs and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA vaccines expressing herpes simplex virus type 2 (HSV-2) full-length glycoprotein D (gD), or a truncated form of HSV-2 glycoprotein B (gB) were evaluated for protective efficacy in two experimental models of HSV-2 infection. Intramuscular (i.m.) injection of mice showed that each construction induced neutralizing serum antibodies and protected the mice from lethal HSV-2 infection. Dose-titration studies showed that low doses (< or = 1 microgram) of either DNA construction induced protective immunity, and that a single immunization with the gD construction was effective. The two DNAs were then tested in a low-dosage combination in guinea pigs. Immune sera from DNA-injected animals had antibodies to both gD and gB, and virus neutralizing activity. When challenged by vaginal infection with HSV-2, the DNA-immunized animals were significantly protected from primary genital disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Huntington disease is a dominantly inherited, untreatable neurological disorder featuring a progressive loss of striatal output neurons that results in dyskinesia, cognitive decline, and, ultimately, death. Neurotrophic factors have recently been shown to be protective in several animal models of neurodegenerative disease, raising the possibility that such substances might also sustain the survival of compromised striatal output neurons. We determined whether intracerebral administration of brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, or ciliary neurotrophic factor could protect striatal output neurons in a rodent model of Huntington disease. Whereas treatment with brain-derived neurotrophic factor, nerve growth factor, or neurotrophin-3 provided no protection of striatal output neurons from death induced by intrastriatal injection of quinolinic acid, an N-methyl-D-aspartate glutamate receptor agonist, treatment with ciliary neurotrophic factor afforded marked protection against this neurodegenerative insult.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glial-cell-line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for adult nigral dopamine neurons in vivo. GDNF has both protective and restorative effects on the nigro-striatal dopaminergic (DA) system in animal models of Parkinson disease. Appropriate administration of this factor is essential for the success of its clinical application. Since it cannot cross the blood–brain barrier, a gene transfer method may be appropriate for delivery of the trophic factor to DA cells. We have constructed a recombinant adenovirus (Ad) encoding GDNF and injected it into rat striatum to make use of its ability to infect neurons and to be retrogradely transported by DA neurons. Ad-GDNF was found to drive production of large amounts of GDNF, as quantified by ELISA. The GDNF produced after gene transfer was biologically active: it increased the survival and differentiation of DA neurons in vitro. To test the efficacy of the Ad-mediated GDNF gene transfer in vivo, we used a progressive lesion model of Parkinson disease. Rats received injections unilaterally into their striatum first of Ad and then 6 days later of 6-hydroxydopamine. We found that mesencephalic nigral dopamine neurons of animals treated with the Ad-GDNF were protected, whereas those of animals treated with the Ad-β-galactosidase were not. This protection was associated with a difference in motor function: amphetamine-induced turning was much lower in animals that received the Ad-GDNF than in the animals that received Ad-β-galactosidase. This finding may have implications for the development of a treatment for Parkinson disease based on the use of neurotrophic factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the amyloid precursor protein (APP) gene cause early-onset familial Alzheimer disease (AD) by affecting the formation of the amyloid β (Aβ) peptide, the major constituent of AD plaques. We expressed human APP751 containing these mutations in the brains of transgenic mice. Two transgenic mouse lines develop pathological features reminiscent of AD. The degree of pathology depends on expression levels and specific mutations. A 2-fold overexpression of human APP with the Swedish double mutation at positions 670/671 combined with the V717I mutation causes Aβ deposition in neocortex and hippocampus of 18-month-old transgenic mice. The deposits are mostly of the diffuse type; however, some congophilic plaques can be detected. In mice with 7-fold overexpression of human APP harboring the Swedish mutation alone, typical plaques appear at 6 months, which increase with age and are Congo Red-positive at first detection. These congophilic plaques are accompanied by neuritic changes and dystrophic cholinergic fibers. Furthermore, inflammatory processes indicated by a massive glial reaction are apparent. Most notably, plaques are immunoreactive for hyperphosphorylated tau, reminiscent of early tau pathology. The immunoreactivity is exclusively found in congophilic senile plaques of both lines. In the higher expressing line, elevated tau phosphorylation can be demonstrated biochemically in 6-month-old animals and increases with age. These mice resemble major features of AD pathology and suggest a central role of Aβ in the pathogenesis of the disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The heroin analogue 1-methyl-4-phenylpyridinium, MPP+, both in vitro and in vivo, produces death of dopaminergic substantia nigral cells by inhibiting the mitochondrial NADH dehydrogenase multienzyme complex, producing a syndrome indistinguishable from Parkinson's disease. Similarly, a fragment of amyloid protein, Aβ1–42, is lethal to hippocampal cells, producing recent memory deficits characteristic of Alzheimer's disease. Here we show that addition of 4 mM d-β-hydroxybutyrate protected cultured mesencephalic neurons from MPP+ toxicity and hippocampal neurons from Aβ1–42 toxicity. Our previous work in heart showed that ketone bodies, normal metabolites, can correct defects in mitochondrial energy generation. The ability of ketone bodies to protect neurons in culture suggests that defects in mitochondrial energy generation contribute to the pathophysiology of both brain diseases. These findings further suggest that ketone bodies may play a therapeutic role in these most common forms of human neurodegeneration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inactivation of glycogen synthase kinase-3β (GSK3β) by S9 phosphorylation is implicated in mechanisms of neuronal survival. Phosphorylation of a distinct site, Y216, on GSK3β is necessary for its activity; however, whether this site can be regulated in cells is unknown. Therefore we examined the regulation of Y216 phosphorylation on GSK3β in models of neurodegeneration. Nerve growth factor withdrawal from differentiated PC12 cells and staurosporine treatment of SH-SY5Y cells led to increased phosphorylation at Y216, GSK3β activity, and cell death. Lithium and insulin, agents that lead to inhibition of GSK3β and adenoviral-mediated transduction of dominant negative GSK3β constructs, prevented cell death by the proapoptotic stimuli. Inhibitors induced S9 phosphorylation and inactivation of GSK3β but did not affect Y216 phosphorylation, suggesting that S9 phosphorylation is sufficient to override GSK3β activation by Y216 phosphorylation. Under the conditions examined, increased Y216 phosphorylation on GSK3β was not an autophosphorylation response. In resting cells, Y216 phosphorylation was restricted to GSK3β present at focal adhesion sites. However, after staurosporine, a dramatic alteration in the immunolocalization pattern was observed, and Y216-phosphorylated GSK3β selectively increased within the nucleus. In rats, Y216 phosphorylation was increased in degenerating cortical neurons induced by ischemia. Taken together, these results suggest that Y216 phosphorylation of GSK3β represents an important mechanism by which cellular insults can lead to neuronal death.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This investigation was pursued to test the use of intracellular antibodies (intrabodies) as a means of blocking the pathogenesis of Huntington's disease (HD). HD is characterized by abnormally elongated polyglutamine near the N terminus of the huntingtin protein, which induces pathological protein–protein interactions and aggregate formation by huntingtin or its exon 1-containing fragments. Selection from a large human phage display library yielded a single-chain Fv (sFv) antibody specific for the 17 N-terminal residues of huntingtin, adjacent to the polyglutamine in HD exon 1. This anti-huntingtin sFv intrabody was tested in a cellular model of the disease in which huntingtin exon 1 had been fused to green fluorescent protein (GFP). Expression of expanded repeat HD-polyQ-GFP in transfected cells shows perinuclear aggregation similar to human HD pathology, which worsens with increasing polyglutamine length; the number of aggregates in these transfected cells provided a quantifiable model of HD for this study. Coexpression of anti-huntingtin sFv intrabodies with the abnormal huntingtin-GFP fusion protein dramatically reduced the number of aggregates, compared with controls lacking the intrabody. Anti-huntingtin sFv fused with a nuclear localization signal retargeted huntingtin analogues to cell nuclei, providing further evidence of the anti-huntingtin sFv specificity and of its capacity to redirect the subcellular localization of exon 1. This study suggests that intrabody-mediated modulation of abnormal neuronal proteins may contribute to the treatment of neurodegenerative diseases such as HD, Alzheimer's, Parkinson's, prion disease, and the spinocerebellar ataxias.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An emerging topic in plant biology is whether plants display analogous elements of mammalian programmed cell death during development and defense against pathogen attack. In many plant–pathogen interactions, plant cell death occurs in both susceptible and resistant host responses. For example, specific recognition responses in plants trigger formation of the hypersensitive response and activation of host defense mechanisms, resulting in restriction of pathogen growth and disease development. Several studies indicate that cell death during hypersensitive response involves activation of a plant-encoded pathway for cell death. Many susceptible interactions also result in host cell death, although it is not clear how or if the host participates in this response. We have generated transgenic tobacco plants to express animal genes that negatively regulate apoptosis. Plants expressing human Bcl-2 and Bcl-xl, nematode CED-9, or baculovirus Op-IAP transgenes conferred heritable resistance to several necrotrophic fungal pathogens, suggesting that disease development required host–cell death pathways. In addition, the transgenic tobacco plants displayed resistance to a necrogenic virus. Transgenic tobacco harboring Bcl-xl with a loss-of-function mutation did not protect against pathogen challenge. We also show that discrete DNA fragmentation (laddering) occurred in susceptible tobacco during fungal infection, but does not occur in transgenic-resistant plants. Our data indicate that in compatible plant–pathogen interactions apoptosis-like programmed cell death occurs. Further, these animal antiapoptotic genes function in plants and should be useful to delineate resistance pathways. These genes also have the potential to generate effective disease resistance in economically important crops.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hepatocyte growth factor (HGF/SF) receptor, Met, regulates mitogenesis, motility, and morphogenesis in a cell type-dependent fashion. Activation of Met via autocrine, paracrine, or mutational mechanisms can lead to tumorigenesis and metastasis and numerous studies have linked inappropriate expression of this ligand-receptor pair to most types of human solid tumors. To prepare mAbs to human HGF/SF, mice were immunized with native and denatured preparations of the ligand. Recloned mAbs were tested in vitro for blocking activity against scattering and branching morphogenesis. Our results show that no single mAb was capable of neutralizing the in vitro activity of HGF/SF, and that the ligand possesses a minimum of three epitopes that must be blocked to prevent Met tyrosine kinase activation. In vivo, the neutralizing mAb combination inhibited s.c. growth in athymic nu/nu mice of tumors dependent on an autocrine Met-HGF/SF loop. Importantly, growth of human glioblastoma multiforme xenografts expressing Met and HGF/SF were markedly reduced in the presence of HGF/SF-neutralizing mAbs. These results suggest interrupting autocrine and/or paracrine Met-HGF/SF signaling in tumors dependent on this pathway is a possible intervention strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last few years, data from experiments employing transgenic models of autoimmune disease have strengthened a particular concept of autoimmunity: disease results not so much from cracks in tolerance induction systems, leading to the generation of anti-self repertoire, as from the breakdown of secondary systems that keep these cells in check. T cells with anti-self specificities are readily found in disease-free individuals but ignore target tissues. This is also the case in some transgenic models, in spite of overwhelming numbers of autoreactive cells. In other instances, local infiltration and inflammation result, but they are well tolerated for long periods of time and do not terminally destroy target tissue. We review the possible molecular and cellular mechanisms that underlie these situations, with a particular emphasis on the destruction of pancreatic beta cells in transgenic models of insulin-dependent disease.