5 resultados para DNA, Fungal

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gene (NhKIN1) encoding a kinesin was cloned from Nectria haematococca genomic DNA by polymerase chain reaction amplification, using primers corresponding to conserved regions of known kinesin-encoding genes. Sequence analysis showed that NhKIN1 belongs to the subfamily of conventional kinesins and is distinct from any of the currently designated kinesin-related protein subfamilies. Deletion of NhKIN1 by transformation-mediated homologous recombination caused several dramatic phenotypes: a 50% reduction in colony growth rate, helical or wavy hyphae with reduced diameter, and subcellular abnormalities including withdrawal of mitochondria from the growing hyphal apex and reduction in the size of the Spitzenkörper, an apical aggregate of secretory vesicles. The effects on mitochondria and Spitzenkörper were not due to altered microtubule distribution, as microtubules were abundant throughout the length of hyphal tip cells of the mutant. The rate of spindle elongation during anaphase B of mitosis was reduced 11%, but the rate was not significantly different from that of wild type. This lack of a substantial mitotic phenotype is consistent with the primary role of the conventional kinesins in organelle motility rather than mitosis. Our results provide further evidence that the microtubule-based motility mechanism has a direct role in apical transport of secretory vesicles and the first evidence for its role in apical transport of mitochondria in a filamentous fungus. They also include a unique demonstration that a microtubule-based motor protein is essential for normal positioning of the Spitzenkörper, thus providing a new insight into the cellular basis for the aberrant hyphal morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

M2 is a double-stranded RNA (dsRNA) element occurring in the hypovirulent isolate Rhs 1A1 of the plant pathogenic basidiomycete Rhizoctonia solani. Rhs 1A1 originated as a sector of the virulent field isolate Rhs 1AP, which contains no detectable amount of the M2 dsRNA. The complete sequence (3,570 bp) of the M2 dsRNA has been determined. A 6.9-kbp segment of total DNA from either Rhs 1A1 or Rhs 1AP hybridizes with an M2-specific cDNA probe. The sequences of M2 dsRNA and of PCR products generated from Rhs 1A1 total DNA were found to be identical. Thus this report describes a fungal host containing full-length DNA copies of a dsRNA element. A major portion of the M2 dsRNA is located in the cytoplasm, whereas a smaller amount is found in mitochondria. Based on either the universal or the mitochondrial genetic code of filamentous fungi, one strand of M2 encodes a putative protein of 754 amino acids. The resulting polypeptide has all four motifs of a dsRNA viral RNA-dependent RNA polymerase (RDRP) and is phylogenetically related to the RDRP of a mitochondrial dsRNA associated with hypovirulence in strain NB631 of Cryphonectria parasitica, incitant of chestnut blight. This polypeptide also has significant sequence similarity with two domains of a pentafunctional polypeptide, which catalyzes the five central steps of the shikimate pathway in yeast and filamentous fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In North America there are two generally recognized pathotypes (pathotypes 1 and 2) of the fungus Entomophaga grylli which show host-preferential infection of grasshopper subfamilies. Pathotype 3, discovered in Australia, has a broader grasshopper host range and was considered to be a good biocontrol agent. Between 1989 and 1991 pathotype 3 was introduced at two field sites in North Dakota. Since resting spores are morphologically indistinguishable among pathotypes, we used pathotype-specific DNA probes to confirm pathotype identification in E. grylli-infected grasshoppers collected at the release sites in 1992, 1993, and 1994. In 1992, up to 23% of E. grylli-infected grasshoppers of the subfamilies Melanoplinae, Oedipodinae, and Gomphocerinae were infected by pathotype 3, with no infections > 1 km from the release sites. In 1993, pathotype 3 infections declined to 1.7%. In 1994 grasshopper populations were low and no pathotype 3 infections were found. The frequency of pathotype 3 infection has declined to levels where its long-term survival in North America is questionable. Analyses of biocontrol releases are critical to evaluating the environmental risks associated with these ecological manipulations, and molecular probes are powerful tools for monitoring biocontrol releases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations causing mitochondrial defects were induced in a virulent strain of the chestnut blight fungus Cryphonectria parasitica (Murr.) Barr. Virulence on apples and chestnut trees was reduced in four of six extensively characterized mutants. Relative to the virulent progenitor, the attenuated mutants had reduced growth rates, abnormal colony morphologies, and few asexual spores, and they resembled virus-infected strains. The respiratory defects and attenuated virulence phenotypes (hypovirulence) were transmitted from two mutants to a virulent strain by hyphal contact. The infectious transmission of hypovirulence occurred independently of the transfer of nuclei, did not involve a virus, and dynamically reflects fungal diseases caused by mitochondrial mutations. In these mutants, mitochondrial mutations are further implicated in generation of the attenuated state by (i) uniparental (maternal) inheritance of the trait, (ii) presence of high levels of cyanide-insensitive mitochondrial alternative oxidase activity, (iii) cytochrome deficiencies, and (iv) structural abnormalities in the mtDNA. Hence, cytoplasmically transmissible hypovirulence phenotypes found in virus-free strains of C. parasitica from recovering trees may be caused by mutant forms of mtDNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a class of proteins that bind single-stranded telomeric DNA and are required for the nuclear organization of telomeres and/or telomere-associated proteins. Rlf6p was identified by its sequence similarity to Gbp1p, a single-stranded telomeric DNA-binding protein from Chlamydomonas reinhardtii. Rlf6p and Gbp1p bind yeast single-stranded G-strand telomeric DNA. Both proteins include at least two RNA recognition motifs, which are found in many proteins that interact with single-stranded nucleic acids. Disruption of RLF6 alters the distribution of repressor/activator protein 1 (Rap1p), a telomere-associated protein. In wild-type yeast cells, Rap1p localizes to a small number of perinuclear spots, while in rlf6 cells Rap1p appears diffuse and nuclear. Interestingly, telomere position effect and telomere length control, which require RAP1, are unaffected by rlf6 mutations, demonstrating that Rap1p localization can be uncoupled from other Rap1p-dependent telomere functions. In addition, expression of Chlamydomonas GBP1 restores perinuclear, punctate Rap1p localization in rlf6 mutant cells. The functional complementation of a fungal gene by an algal gene suggests that Rlf6p and Gbp1p are members of a conserved class of single-stranded telomeric DNA-binding proteins that influence nuclear organization. Furthermore, it demonstrates that, despite their unusual codon bias, C. reinhardtii genes can be efficiently translated in Saccharomyces cerevisiae cells.