120 resultados para Beta cell

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The positional relationships among all of the visible organelles in a densely packed region of cytoplasm from an insulin secreting, cultured mammalian cell have been analyzed in three dimensions (3-D) at ≈6 nm resolution. Part of a fast frozen/freeze-substituted HIT-T15 cell that included a large portion of the Golgi ribbon was reconstructed in 3-D by electron tomography. The reconstructed volume (3.1 × 3.2 × 1.2 μm3) allowed sites of interaction between organelles, and between microtubules and organellar membranes, to be accurately defined in 3-D and quantitatively analyzed by spatial density analyses. Our data confirm that the Golgi in an interphase mammalian cell is a single, ribbon-like organelle composed of stacks of flattened cisternae punctuated by openings of various sizes [Rambourg, A., Clermont, Y., & Hermo, L. (1979) Am. J. Anat. 154, 455–476]. The data also show that the endoplasmic reticulum (ER) is a single continuous compartment that forms close contacts with mitochondria, multiple trans Golgi cisternae, and compartments of the endo-lysosomal system. This ER traverses the Golgi ribbon from one side to the other via cisternal openings. Microtubules form close, non-random associations with the cis Golgi, the ER, and endo-lysosomal compartments. Despite the dense packing of organelles in this Golgi region, ≈66% of the reconstructed volume is calculated to represent cytoplasmic matrix. We relate the intimacy of structural associations between organelles in the Golgi region, as quantified by spatial density analyses, to biochemical mechanisms for membrane trafficking and organellar communication in mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic beta cells exhibit oscillations in electrical activity, cytoplasmic free Ca2+ concentration ([Ca2+](i)), and insulin release upon glucose stimulation. The mechanism by which these oscillations are generated is not known. Here we demonstrate fluctuations in the activity of the ATP-dependent K+ channels (K(ATP) channels) in single beta cells subject to glucose stimulation or to stimulation with low concentrations of tolbutamide. During stimulation with glucose or low concentrations of tolbutamide, K(ATP) channel activity decreased and action potentials ensued. After 2-3 min, despite continuous stimulation, action potentials subsided and openings of K(ATP) channels could again be observed. Transient suppression of metabolism by azide in glucose-stimulated beta cells caused reversible termination of electrical activity, mimicking the spontaneous changes observed with continuous glucose stimulation. Thus, oscillations in K(ATP) channel activity during continuous glucose stimulation result in oscillations in electrical activity and [Ca2+](i).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic islet amyloid deposits are a characteristic pathologic feature of non-insulin-dependent diabetes mellitus and contain islet amyloid polypeptide (IAPP; amylin). We used transgenic mice that express human IAPP in pancreatic beta cells to explore the potential role of islet amyloid in the pathogenesis of non-insulin-dependent diabetes mellitus. Extensive amyloid deposits were observed in the pancreatic islets of approximately 80% of male transgenic mice > 13 months of age. Islet amyloid deposits were rarely observed in female transgenic mice (11%) and were never seen in nontransgenic animals. Ultrastructural analysis revealed that these deposits were composed of human IAPP-immunoreactive fibrils that accumulated between beta cells and islet capillaries. Strikingly, approximately half of the mice with islet amyloid deposits were hyperglycemic (plasma glucose > 11 mM). In younger (6- to 9-month-old) male transgenic mice, islet amyloid deposits were less commonly observed but were always associated with severe hyperglycemia (plasma glucose > 22 mM). These data indicate that expression of human IAPP in beta cells predisposes male mice to the development of islet amyloid and hyperglycemia. The frequent concordance of islet amyloid with hyperglycemia in these mice suggests an interdependence of these two conditions and supports the hypothesis that islet amyloid may play a role in the development of hyperglycemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different autoantigens are thought to be involved in the pathogenesis of insulin-dependent diabetes mellitus, and they may account for the variation in the clinical presentation of the disease. Sera from patients with autoimmune polyendocrine syndrome type I contain autoantibodies against the beta-cell proteins glutamate decarboxylase and an unrelated 51-kDa antigen. By screening of an expression library derived from rat insulinoma cells, we have identified the 51-kDa protein as aromatic-L-amino-acid decarboxylase (EC 4.1.1.28). In addition to the previously published full-length cDNA, forms coding for a truncated and an alternatively spliced version were identified. Aromatic L-amino acid decarboxylase catalyzes the decarboxylation of L-5-hydroxytryptophan to serotonin and that of L-3,4-dihydroxyphenylalanine to dopamine. Interestingly, pyridoxal phosphate is the cofactor of both aromatic L-amino acid decarboxylase and glutamate decarboxylase. The biological significance of the neurotransmitters produced by the two enzymes in the beta cells remains largely unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies on circulating T cells and antibodies in newly diagnosed type 1 diabetic patients and rodent models of autoimmune diabetes suggest that beta-cell membrane proteins of 38 kDa may be important molecular targets of autoimmune attack. Biochemical approaches to the isolation and identification of the 38-kDa autoantigen have been hampered by the restricted availability of islet tissue and the low abundance of the protein. A procedure of epitope analysis for CD4+ T cells using subtracted expression libraries (TEASEL) was developed and used to clone a 70-amino acid pancreatic beta-cell peptide incorporating an epitope recognized by a 38-kDa-reactive CD4+ T-cell clone (1C6) isolated from a human diabetic patient. The minimal epitope was mapped to a 10-amino acid synthetic peptide containing a DR1 consensus binding motif. Data base searches did not reveal the identity of the protein, though a weak homology to the bacterial superantigens SEA (Streptococcus pyogenes exotoxin A) and SEB (Staphylococcus aureus enterotoxin B) (23% identity) was evident. The TEASEL procedure might be used to identify epitopes of other autoantigens recognized by CD4+ T cells in diabetes as well as be more generally applicable to the study low-abundance autoantigens in other tissue-specific autoimmune diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The granulocyte/macrophage colony-stimulating factor (GM-CSF) receptor (GMR) is a heterodimeric receptor expressed by myeloid lineage cells. In this study we have investigated domains of the GMR beta-chain (GMR beta) involved in maintaining cellular viability. Using a series of nested GMR beta deletion mutants, we demonstrate that there are at least two domains of GMR beta that contribute to viability signals. Deletion of amino acid residues 626-763 causes a viability defect that can be rescued with fetal calf serum (FCS). Deletion of residues 518-626, in contrast, causes a further decrement in viability that can be only partially compensated by the addition of FCS. GMR beta truncated proximal to amino acid 517 will not support long-term growth under any conditions. Site-directed mutagenesis of tyrosine-750 (Y750), which is contained within the distal viability domain, to phenylalanine eliminates all demonstrable tyrosine phosphorylation of GMR beta. Cell lines transfected with mutant GMR beta (Y750-->F) have a viability disadvantage when compared to cell lines containing wild-type GMR that is partially rescued by the addition of FCS. We studied signal transduction in mutant cell lines in an effort to identify pathways that might participate in the viability signal. Although tyrosine phosphorylation of JAK2, SHPTP2, and Vav is intact in Y750-->F mutant cell lines, Shc tyrosine phosphorylation is reduced. This suggests a potential role for Y750 and potentially Shc in a GM-CSF-induced signaling pathway that helps maintain cellular viability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the mitogenic effect of three mutant forms of human insulin on insulin-producing beta cells of the developing pancreas. We examined transgenic embryonic and adult mice expressing (i) human [AspB10]-proinsulin/insulin ([AspB10]ProIN/IN), produced by replacement of histidine by aspartic acid at position 10 of the B chain and characterized by an increased affinity for the insulin receptor; (ii) human [LeuA3]insulin, produced by the substitution of leucine for valine in position 3 of the A chain, which exhibits decreased receptor binding affinity; and (iii) human [LeuA3, AspB10]insulin "double" mutation. During development, beta cells of AspB10 embryos were twice as abundant and had a 3 times higher rate of proliferation compared with beta cells of littermate controls. The mitogenic effect of [AspB10]ProIN/IN was specific for embryonic beta cells because the rate of proliferation of beta cells of adults and of glucagon (alpha) cells and adrenal chromaffin cells of embryos was similar in AspB10 mice and controls. In contrast to AspB10 embryos, the number of beta cells in the LeuA3 and "double" mutant lines was similar to the number in controls. These findings indicate that the [AspB10]ProIN/IN analog increased the rate of fetal beta-cell proliferation. The mechanism or mechanisms that mediate this mitogenic effect remain to be determined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ATP-sensitive K+ (KATP) channels are known to play important roles in various cellular functions, but the direct consequences of disruption of KATP channel function are largely unknown. We have generated transgenic mice expressing a dominant-negative form of the KATP channel subunit Kir6.2 (Kir6.2G132S, substitution of glycine with serine at position 132) in pancreatic beta cells. Kir6.2G132S transgenic mice develop hypoglycemia with hyperinsulinemia in neonates and hyperglycemia with hypoinsulinemia and decreased beta cell population in adults. KATP channel function is found to be impaired in the beta cells of transgenic mice with hyperglycemia. In addition, both resting membrane potential and basal calcium concentrations are shown to be significantly elevated in the beta cells of transgenic mice. We also found a high frequency of apoptotic beta cells before the appearance of hyperglycemia in the transgenic mice, suggesting that the KATP channel might play a significant role in beta cell survival in addition to its role in the regulation of insulin secretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expression of glucokinase in hepatocytes and pancreatic 6-cells is of major physiologic importance to mammalian glucose homeostasis. Liver glucokinase catalyzes the first committed step in the disposal of glucose, and beta-cell glucokinase catalyzes a rate-limiting step required for glucose-regulated insulin release. The present study reports the expression of glucokinase in rat glucagon-producing alpha-cells, which are negatively regulated by glucose. Purified rat alpha-cells express glucokinase mRNA and protein with the same transcript length, nucleotide sequence, and immunoreactivity as the beta-cell isoform. Glucokinase activity accounts for more than 50% of glucose phosphorylation in extracts of alpha-cells and for more than 90% of glucose utilization in intact cells. The glucagon-producing tumor MSL-G-AN also contained glucokinase mRNA, protein, and enzymatic activity. These data indicate that glucokinase may serve as a metabolic glucose sensor in pancreatic alpha-cells and, hence, mediate a mechanism for direct regulation of glucagon release by extracellular glucose. Since these cells do not express Glut2, we suggest that glucose sensing does not necessarily require the coexpression of Glut2 and glucokinase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The islet in non-insulin-dependent diabetes mellitus (NIDDM) is characterized by loss of beta cells and large local deposits of amyloid derived from the 37-amino acid protein, islet amyloid polypeptide (IAPP). We have hypothesized that IAPP amyloid forms intracellularly causing beta-cell destruction under conditions of high rates of expression. To test this we developed a homozygous transgenic mouse model with high rates of expression of human IAPP. Male transgenic mice spontaneously developed diabetes mellitus by 8 weeks of age, which was associated with selective beta-cell death and impaired insulin secretion. Small intra- and extracellular amorphous IAPP aggregates were present in islets of transgenic mice during the development of diabetes mellitus. However, IAPP derived amyloid deposits were found in only a minority of islets at approximately 20 weeks of age, notably after development of diabetes mellitus in male transgenic mice. Approximately 20% of female transgenic mice spontaneously developed diabetes mellitus at 30+ weeks of age, when beta-cell degeneration and both amorphous and amyloid deposits of IAPP were present. We conclude that overexpression of human IAPP causes beta-cell death, impaired insulin secretion, and diabetes mellitus. Large deposits of IAPP derived amyloid do not appear to be important in this cytotoxicity, but early, small amorphous intra- and extracellular aggregates of human IAPP were consistently present at the time of beta-cell death and therefore may be the most cytotoxic form of IAPP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The observation that overt type I diabetes is often preceded by the appearance of insulin autoantibodies and the reports that prophylactic administration of insulin to biobreeding diabetes-prone (BB-DP) rats, nonobese diabetic (NOD) mice, and human subjects results in protection from diabetes suggest that an immune response to insulin is involved in the process of beta cell destruction. We have recently reported that islet-infiltrating cells isolated from NOD mice are enriched for insulin-specific T cells, that insulin-specific T cell clones are capable of adoptive transfer of diabetes, and that epitopes present on residues 9-23 of the B chain appear to be dominant in this spontaneous response. In the experiments described in this report, the epitope specificity of 312 independently isolated insulin-specific T cell clones was determined and B-(9-23) was found to be dominant, with 93% of the clones exhibiting specificity toward this peptide and the remainder to an epitope on residues 7-21 of the A chain. On the basis of these observations, the effect of either subcutaneous or intranasal administration of B-(9-23) on the incidence of diabetes in NOD mice was determined. The results presented here indicate that both subcutaneous and intranasal administration of B-(9-23) resulted in a marked delay in the onset and a decrease in the incidence of diabetes relative to mice given the control peptide, tetanus toxin-(830-843). This protective effect is associated with reduced T-cell proliferative response to B-(9-23) in B-(9-23)-treated mice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have used a PCR-based technology to study the V beta 5 and V beta 17 repertoire of T-cell populations in HLA-DR2 multiple sclerosis (MS) patients. We have found that the five MS DR2 patients studied present, at the moment of diagnosis and prior to any treatment, a marked expansion of a CD4+ T-cell population bearing V beta 5-J beta 1.4 beta chains. The sequences of the complementarity-determining region 3 of the expanded T cells are highly homologous. One shares structural features with that of the T cells infiltrating the central nervous system and of myelin basic protein-reactive T cells found in HLA-DR2 MS patients. An homologous sequence was not detectable in MS patients expressing DR alleles other than DR2. However, it is detectable but not expanded in healthy DR2 individuals. The possible mechanisms leading to its in vivo proliferation at the onset of MS are discussed.