132 resultados para interleukin 23 receptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 12 (IL-12) is an important immunoregulatory cytokine whose receptor is a member of the hematopoietin receptor superfamily. We have recently demonstrated that stimulation of human T and natural killer cells with IL-12 induces tyrosine phosphorylation of the Janus family tyrosine kinase JAK2 and Tyk2, implicating these kinases in the immediate biochemical response to IL-12. Recently, transcription factors known as STATs (signal transducers and activators of transcription) have been shown to be tyrosine phosphorylated and activated in response to a number of cytokines that bind hematopoietin receptors and activate JAK kinases. In this report we demonstrate that IL-12 induces tyrosine phosphorylation of a recently identified STAT family member, STAT4, and show that STAT4 expression is regulated by T-cell activation. Furthermore, we show that IL-12 stimulates formation of a DNA-binding complex that recognizes a DNA sequence previously shown to bind STAT proteins and that this complex contains STAT4. These data, and the recent demonstration of JAK phosphorylation by IL-12, identify a rapid signal-transduction pathway likely to mediate IL-12-induced gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen-specific activation of T lymphocytes, via stimulation of the T-cell antigen receptor (TCR) complex, is marked by a rapid and sustained increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). It has been suggested that the second messenger inositol 1,4,5-trisphosphate (IP3) produced after TCR stimulation binds to the IP3 receptor (IP3R), an intracellular Ca(2+)-release channel, and triggers the increase in [Ca2+]i that activates transcription of the gene for T-cell growth factor interleukin 2 (IL-2). However, the role of the IP3R in T-cell signaling and possibly in plasma membrane Ca2+ influx in T cells remains unproven. Stable transfection of T cells (Jurkat) with antisense type 1 IP3R cDNA prevented type 1 IP3R expression, providing a tool for dissecting the role of IP3 signaling during T-cell activation. T cells lacking type 1 IP3R failed to increase [Ca2+]i or produce IL-2 after TCR stimulation. Moreover, depletion of intracellular Ca2+ stores without TCR activation stimulated Ca2+ influx in cells lacking the type 1 IP3R. These results establish that the type 1 IP3R is required for intracellular Ca2+ release that triggers antigen-specific T-cell proliferation but not for plasma membrane Ca2+ influx.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse bone marrow-derived mast cells (BMMCs) developed with interleukin 3 (IL-3) can be stimulated by c-kit ligand (KL) and accessory cytokines over a period of hours for direct delayed prostaglandin (PG) generation or over a period of days to prime for augmented IgE-dependent PG and leukotriene (LT) production, as previously reported. We now report that IL-4 is counterregulatory for each of these distinct KL-dependent responses. BMMCs cultured for 4 days with KL + IL-3 or with KL + IL-10 produced 5- to 7-fold more PGD2 and approximately 2-fold more LTC4 in response to IgE-dependent activation than BMMCs maintained in IL-3 alone. IL-4 inhibited the priming for increased IgE-dependent PGD2 and LTC4 production to the level obtained by activation of BMMCs maintained in IL-3 alone with an IC50 of approximately 0.2 ng/ml. IL-4 inhibited the KL-induced increase in expression of cytosolic phospholipase A2 (cPLA2) but had no effect on the incremental expression of PG endoperoxide synthase 1 (PGHS-1) and hematopoietic PGD2 synthase or on the continued baseline expression of 5-lipoxygenase, 5-lipoxygenase activating protein, and LTC4 synthase. BMMCs stimulated by KL + IL-10 for 10 h exhibited a delayed phase of PGD2 generation, which was dependent on de novo induction of PGHS-2. IL-4 inhibited the induction of PGHS-2 expression and the accompanying cytokine-initiated delayed PGD2 generation with an IC50 of approximately 6 ng/ml. IL-4 had no effect on the expression of PGHS-2 and the production of PGD2 elicited by addition of IL-1 beta to the combination of KL + IL-10. IL-4 had no effect on the immediate phase of eicosanoid synthesis elicited by KL alone or by IgE and antigen in BMMCs maintained in IL-3. Thus, the counterregulatory action of IL-4 on eicosanoid generation is highly selective for the induced incremental expression of cPLA2 and the de novo expression of PGHS-2, thereby attenuating time-dependent cytokine-regulated responses to stimulation via Fc epsilon receptor I and stimulation via c-kit, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The T-cell antigen receptor zeta chain plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. zeta chain can associate with certain protein tyrosine kinases and retains the capacity to transduce signals independently of the other receptor subunits. Thus, zeta chain could couple cell-surface-expressed T-cell antigen receptors to the intracellular signal-transduction apparatus by its association with various intracellular molecules in addition to tyrosine kinases. In the process of searching for zeta chain-associated molecules we observed that after lysis of resting T cells with Triton X-100, zeta chain is localized in the detergent-insoluble fraction, in addition to its presence in the detergent-soluble fraction. Treatment of T cells with cytochalasin B, an actin-depolymerizing agent, leads to the complete dissociation of zeta chain from the Triton-insoluble fraction, suggesting a linkage between zeta chain and the cytoskeletal matrix. We have also determined that cytoskeletal-associated zeta chain is expressed on the cell surface. Furthermore, a tyrosine-phosphorylated 16-kDa zeta chain was detected only in the Triton-insoluble cytoskeletal fraction of resting T cells. zeta chain also maintains its association with the cytoskeleton when expressed in COS cells, inferring that the cytoskeletal elements involved in this linkage may be ubiquitous. Finally, we have localized a 42-amino acid region in the intracytoplasmic domain of zeta chain, which is crucial for maximal interaction between zeta chain and the cytoskeleton. Anchorage of cell-surface-expressed zeta chain to the cytoskeleton in resting T cells may facilitate recycling of receptor complexes and/or allow the transduction of external stimuli into the cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of arthritis in DBA/1 mice usually requires immunization with the antigen type II collagen emulsified with Mycobacterium tuberculosis in oil. Here we describe that interleukin 12 (IL-12) can replace mycobacteria and cause severe arthritis of DBA/1 mice when administered in combination with type II collagen. Immunization of DBA/1 mice with type II collagen emulsified in oil alone resulted in a weak immune response, and only a few animals (10-30%) developed arthritis. Administration of IL-12 for 5 days simultaneously with each immunization strongly enhanced the anti-type II collagen immune response. Collagen-specific interferon gamma (IFN-gamma) synthesis by ex vivo activated spleen cells was enhanced 3- to 10-fold. IFN-gamma was almost completely produced by CD4+ T cells. Furthermore, the production of collagen-specific IgG2a and IgG2b antibodies was upregulated 10- to 100-fold. As a consequence, the incidence of arthritis in the group of mice immunized with collagen plus IL-12 was very high (80-100%). The developing arthritis was severe, involving approximately 50% of all limbs with strongly increased footpad thickness in most cases. Furthermore, histological examination revealed massive, mainly polymorphonuclear cell infiltration, synovial hyperplasia, cartilage and bone destruction, as well as new bone formation. In many cases, this resulted in the complete loss of joint structure. Neutralization of IFN-gamma in vivo prevented the development of arthritis in collagen-immunized and IL-12-treated mice. In conclusion, our data show that in vivo administered IL-12 can profoundly upregulate a T helper I-type autoimmune response, resulting in severe joint disease in DBA/1 mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As previously observed for FK506, we report here that cyclosporin A (CsA) treatment of mouse fibroblast cells stably transfected with the mouse mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter plasmid (LMCAT cells) results in potentiation of dexamethasone (Dex)-induced CAT gene expression. Potentiation by CsA is observed in cells treated with 10-100 nM Dex but not in cells treated with 1 microM Dex, a concentration of hormone which results in maximum CAT activity. At 10 nM Dex, 1-5 microM CsA provokes an approximately 50-fold increase in CAT gene transcription, compared with transcription induced by Dex alone. No induction of CAT gene expression is observed in cells treated with CsA or FK506 in the absence of Dex. The antisteroid RU 486 abolishes effects obtained in the presence of Dex. Using a series of CsA, as well as FK506, analogs, including some devoid of calcineurin phosphatase inhibition activity, we conclude that the potentiation effects of these drugs on Dex-induced CAT gene expression in LMCAT cells do not occur through a calcineurin-mediated pathway. Western-blotting experiments following immunoprecipitation of glucocorticosteroid receptor (GR) complexes resulted in coprecipitation of GR, heat shock protein hsp90 and two immunophilins: the FK506-binding protein FKBP59 and the CsA-binding protein cyclophilin 40 (CYP40). Two separate immunophilin-hsp90 complexes are present in LMCAT cells: one containing CYP40-hsp90, the other FKBP59-hsp90. Thus, both FKBP59 and CYP40 can be classified as hsp-binding immunophilins, and their possible involvement as targets of immunosuppressants potentiating the GR-mediated transcriptional activity is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Like other cell-surface receptors with intrinsic or associated protein-tyrosine kinase activity, the T-cell receptor complex undergoes a number of modifications, including tyrosine phosphorylation steps, after ligand binding but before transmitting a signal. The requirement for these modifications introduces a temporal lag between ligand binding and receptor signaling. A model for the T-cell receptor is proposed in which this feature greatly enhances the receptor's ability to discriminate between a foreign antigen and self-antigens with only moderately lower affinity. The proposed scheme is a form of kinetic proofreading, known to be essential for the fidelity of protein and DNA synthesis. A variant of this scheme is also described in which a requirement for formation of large aggregates may lead to a further enhancement of the specificity of T-cell activation. Through these mechanisms, ligands of different affinity potentially may elicit qualitatively different signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisera were raised against a synthetic peptide corresponding to the carboxyl terminus of the kappa-opioid receptor (KOR1). Specificity of the antisera was verified by staining of COS-7 cells transfected with KOR1 and epitope-tagged KOR1 cDNAs, by recognition by the antisera of proteins on Western blots of both transfected cells and brain tissue, by the absence of staining of both brain tissue and transfected cells after preabsorption of the antisera with the cognate peptide, and on the strong correlation between the distribution of KOR1 immunoreactivity and that of earlier ligand binding and in situ hybridization studies. Results indicate that KOR1 in neurons is targeted into both the axonal and somatodendritic compartments, but the majority of immunostaining was seen in the somatodendritic compartment. In sections from rat and guinea pig brain, prominent KOR1 staining was seen in the ventral forebrain, hypothalamus, thalamus, posterior pituitary, and midbrain. While the staining pattern was similar in both species, distinct differences were also observed. The distribution of preprodynorphin and KOR1 immunoreactivity was complementary in many brain regions, suggesting that KOR1 is poised to mediate the physiological actions of dynorphin. However, the distribution of KOR1 and enkephalin immunoreactivity was complementary in some regions as well. These results suggest that the KOR1 protein is primarily, but not exclusively, deployed to postsynaptic membranes where it mediates the effects of products of preprodynorphin and possibly preproenkephalin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several lines of evidence have suggested that ganglioside GM1 stimulates neuronal sprouting and enhances the action of nerve growth factor (NGF), but its precise mechanism is yet to be elucidated. We report here that GM1 directly and tightly associates with Trk, the high-affinity tyrosine kinase-type receptor for NGF, and strongly enhances neurite outgrowth and neurofilament expression in rat PC12 cells elicited by a low dose of NGF that alone is insufficient to induce neuronal differentiation. The potentiation of NGF activity by GM1 appears to involve tyrosine-autophosphorylation of Trk, which contains intrinsic tyrosine kinase activity that has been localized to the cytoplasmic domain. In the presence of GM1 in culture medium, there is a > 3-fold increase in NGF-induced autophosphorylation of Trk as compared with NGF alone. We also found that GM1 could directly enhance NGF-activated autophosphorylation of immunoprecipitated Trk in vitro. Monosialoganglioside GM1, but not polysialogangliosides, is tightly associated with immunoprecipitated Trk. Furthermore, such tight association of GM1 with Trk appears to be specific, since a similar association was not observed with other growth factor receptors, such as low-affinity NGF receptor (p75NGR) and epidermal growth factor receptor (EGFR). Thus, these results strongly suggest that GM1 functions as a specific endogenous activator of NGF receptor function, and these enhanced effects appear to be due, at least in part, to tight association of GM1 with Trk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tyrosine phosphorylation of a 17-amino acid immunoreceptor tyrosine-based activation motif (ITAM), conserved in each of the signaling subunits of the T-cell antigen receptor (TCR), mediates the recruitment of ZAP-70 and syk protein-tyrosine kinases (PTKs) to the activated receptor. The interaction between the two tandemly arranged Src-homology 2 (SH2) domains of this family of PTKs and each of the phosphotyrosine-containing ITAMs was examined by real-time measurements of kinetic parameters. The association rate and equilibrium binding constants for the ZAP-70 and syk SH2 domains were determined for the CD3 epsilon ITAM. Both PTKs bound with ka and Kd values of 5 x 10(6) M-1.sec-1 and approximately 25 nM, respectively. Bindings to the other TCR ITAMs (zeta 1, zeta 2, gamma, and delta ITAMs) were comparable, although the zeta 3 ITAM bound approximately 2.5-fold less well. Studies of the affinity of a single functional SH2 domain of ZAP-70 provided evidence for the cooperative nature of binding of the dual SH2 domains. Mutation of either single SH2 domain decreased the Kd by > 100-fold. Finally, the critical features of the ITAM for syk binding were found to be similar to those required for ZAP-70 binding. These data provide insight into the mechanism by which the multisubunit TCR interacts with downstream effector molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection with enterotoxigenic Escherichia coli is a leading cause of traveler's diarrhea. Many enterotoxigenic E. coli strains produce heat-stable enterotoxin (ST), a peptide that binds to the intestinal receptor guanylyl cyclase C known as STaR. The toxin-receptor interaction elevates intracellular cGMP, which then activates apical chloride secretion, resulting in secretory diarrhea. In this report, we examine how the intracellular domains of STaR participate in the propagation and regulation of signaling. We show that STaR exists as an oligomer in both the presence and the absence of toxin. We also demonstrate that deletion of the intracellular kinase-homology domain produces a constitutively active mutant, suggesting that this domain subserves an autoinhibitory function. Finally, we constructed a point mutant within a highly conserved region of the cyclase domain that completely inactivates the catalytic activity of guanylyl cyclase. Cotransfection of this point mutant with wild-type receptor causes a dominant-negative effect on receptor activation. This suggests that interaction of receptor subunits is required for toxin-induced activation and that the cyclase domain is involved in this essential interaction. We propose that the binding of ST to STaR promotes a conformational change across the cell membrane. This removes the inhibitory effects of the kinase-homology domain and promotes an interaction between cyclase domains that leads to receptor activation. The data suggest a paradigm of signal transduction that may also be relevant to other members of the guanylyl cyclase receptor family.