133 resultados para Antigens, viral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, is a human herpesvirus associated with epithelial cell malignancies (nasopharyngeal carcinoma) as well as B-cell malignancies. Understanding how viral latency is disrupted is a central issue in herpesvirus biology. Epithelial cells are the major site of lytic EBV replication within the human host, and viral reactivation occurs in EBV-associated nasopharyngeal carcinomas. It is known that expression of a single viral immediate-early protein, BZLF1, is sufficient to initiate the switch from latent to lytic infection in B cells. Cellular regulation of BZLF1 transcription is therefore thought to play a key role in regulating the stringency of viral latency. Here we show that, unexpectedly, expression of another viral immediate-early protein, BRLF1, can disrupt viral latency in an epithelial cell-specific fashion. Therefore, the mechanisms leading to disruption of EBV latency appear to be cell-type specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Striated muscle is the predominant site of gene expression after i.m. immunization of plasmid DNA, but it is not clear if myocytes or professional antigen-presenting cells (APCs) of hematopoietic origin present the encoded antigens to class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL). To address this issue, CTL responses were assessed in mice engrafted with immune systems that were partially MHC matched with antigen-producing muscle cells. Spleen cells (sc) from immunocompetent F1 H-2bxd mice were infused into H-2b or H-2d mice carrying the severe combined immunodeficiency (scid) mutation, creating F1sc-->H-2b and F1sc-->H-2d chimeras, respectively. Immunization with DNA plasmids encoding the herpes simplex virus gB or the human immunodeficiency virus gp120 glycoproteins elicited antiviral CTL activity. F1sc-->H-2d chimeras responded to an H-2d-restricted gp120 epitope but not an H-2b restricted gB epitope, whereas F1sc-->H-2b chimeras responded to the H-2b but not the H-2d restricted epitope. This pattern of epitope recognition by the sc chimeras indicated that APCs of recipient (scid) origin were involved in initiation of CTL responses. Significantly, CTL responses against epitopes presented by the mismatched donor class I molecules were elicited if F1 bone marrow cells and sc were transferred into scid recipients before or several days to weeks after DNA immunization. Thus, bone marrow-derived APCs are sufficient for class I MHC presentation of viral antigens after i.m. immunization with plasmid DNA. Expression of plasmid DNA by these APCs is probably not a requirement for CTL priming. Instead, they appear to present proteins synthesized by other host cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was previously shown that the Haemonchus contortus apical gut surface proteins p46, p52, and p100 induced protective immunity to challenge infections in goats. Here, it is shown that the three proteins are all encoded by a single gene (GA1) and initially expressed in adult parasites as a polyprotein (p100GA1). p46GA1 and p52GA1 are related proteins with 47% sequence identity, including a cysteine-containing region, which appears to confer secondary structure to these proteins, and a region with sequence similarity to bacterial Tolb proteins. GA1 protein expression is regulated during the life cycle at the level of transcript abundance. Only p52GA1 has characteristics of a glycosylinositolphospholipid membrane-anchored protein. However, both p46GA1 and p52GA1 were released from the gut membrane by phosphatidylinositol specific-phospholipase C, suggesting that p46GA1 membrane association depends on interactions with a glycosylinositolphospholipid gut membrane protein. Finally, GA1 proteins occur in abomasal mucus of infected lambs, demonstrating possible presentation to the host immune system during H. contortus infection. The results identify multiple characteristics of the GA1 proteins that should be considered for design of recombinant antigens for vaccine trials and that implicate a series of cellular processes leading to modification and expression of GA1 proteins at the nematode apical gut surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-viral drug treatment of human immunodeficiency virus type I (HIV-1) and hepatitis B virus (HBV) infections causes rapid reduction in plasma virus load. Viral decline occurs in several phases and provides information on important kinetic constants of virus replication in vivo and pharmacodynamical properties. We develop a mathematical model that takes into account the intracellular phase of the viral life-cycle, defined as the time between infection of a cell and production of new virus particles. We derive analytic solutions for the dynamics following treatment with reverse transcriptase inhibitors, protease inhibitors, or a combination of both. For HIV-1, our results show that the phase of rapid decay in plasma virus (days 2-7) allows precise estimates for the turnover rate of productively infected cells. The initial quasi-stationary phase (days 0-1) and the transition phase (days 1-2) are explained by the combined effects of pharmacological and intracellular delays, the clearance of free virus particles, and the decay of infected cells. Reliable estimates of the first three quantities are not possible from data on virus load only; such estimates require additional measurements. In contrast with HIV-1, for HBV our model predicts that frequent early sampling of plasma virus will lead to reliable estimates of the free virus half-life and the pharmacological properties of the administered drug. On the other hand, for HBV the half-life of infected cells cannot be estimated from plasma virus decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviral vector-mediated gene transfer offers significant potential for gene therapy of many human diseases. However, progress has been slowed by several limitations. First, the insert capacity of currently available adenoviral vectors is limited to 8 kb of foreign DNA. Second, the expression of viral proteins in infected cells is believed to trigger a cellular immune response that results in inflammation and in only transient expression of the transferred gene. We report the development of a new adenoviral vector that has all viral coding sequences removed. Thus, large inserts are accommodated and expression of all viral proteins is eliminated. The first application of this vector system carries a dual expression cassette comprising 28.2 kb of nonviral DNA that includes the full-length murine dystrophin cDNA under control of a large muscle-specific promoter and a lacZ reporter construct. Using this vector, we demonstrate independent expression of both genes in primary mdx (dystrophin-deficient) muscle cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytolytic lymphocytes are of cardinal importance in the recovery from primary viral infections. Both natural killer cells and cytolytic T cells mediate at least part of their effector function by target cell lysis and DNA fragmentation. Two proteins, perforin and granzyme B, contained within the cytoplasmic granules of these cytolytic effector cells have been shown to be directly involved in these processes. A third protein contained within these granules, granzyme A, has so far not been attributed with any biological relevance. Using mice deficient for granzyme A, we show here that granzyme A plays a crucial role in recovery from the natural mouse pathogen, ectromelia, by mechanisms other than cytolytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paraneoplastic neurologic disorders (PNDs) are believed to be autoimmune neuronal degenerations that develop in some patients with systemic cancer. A series of genes encoding previously undiscovered neuronal proteins have been cloned using antiserum from PND patients. Identification of these onconeural antigens suggests a reclassification of the disorders into four groups: those in which neuromuscular junction proteins, nerve terminal/vesicle-associated proteins, neuronal RNA binding proteins, or neuronal signal-transduction proteins serve as target antigens. This review considers insights into basic neurobiology, tumor immunology, and autoimmune neuronal degeneration offered by the characterization of the onconeural antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis B virus (HBV) infection is thought to be controlled by virus-specific cytotoxic T lymphocytes (CTL). We have recently shown that HBV-specific CTL can abolish HBV replication noncytopathically in the liver of transgenic mice by secreting tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) after antigen recognition. We now demonstrate that hepatocellular HBV replication is also abolished noncytopathically during lymphocytic choriomeningitis virus (LCMV) infection, and we show that this process is mediated by TNF-alpha and IFN-alpha/beta produced by LCMV-infected hepatic macrophages. These results confirm the ability of these inflammatory cytokines to abolish HBV replication; they elucidate the mechanism likely to be responsible for clearance of HBV in chronically infected patients who become superinfected by other hepatotropic viruses; they suggest that pharmacological activation of intrahepatic macrophages may have therapeutic value in chronic HBV infection; and they raise the possibility that conceptually similar events may be operative in other viral infections as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graft-versus-host disease (GVHD) is a T-cell-mediated disease of transplanted donor T cells recognizing host alloantigens. Data presented in this report show, to our knowledge, for the first time that a synthetic copolymer of the amino acids L-Glu, L-Lys, L-Ala, and L-Tyr (molecular ratio, 1.9:6.0:4.7:1.0; Mr, 6000-8500) [corrected], termed GLAT, with promiscuous binding to multiple major histocompatibility complex class II alleles is capable of preventing lethal GVHD in the B10.D2 --> BALB/c model (both H-2d) across minor histocompatibility barriers. Administration of GLAT over a limited time after transplant significantly reduced the incidence, onset, and severity of disease. GLAT also improved long-term survival from lethal GVHD: 14/25 (56%) of experimental mice survived > 140 days after transplant compared to 2/26 of saline-treated or to 1/10 of hen egg lysozyme-treated control mice (P < 0.01). Long-term survivors were documented to be fully chimeric by PCR analysis of a polymorphic microsatellite region in the interleukin 1beta gene. In vitro, GLAT inhibited the mixed lymphocyte culture in a dose-dependent fashion across a variety of major barriers tested. Furthermore, GLAT inhibited the response of nylon wool-enriched T cells to syngeneic antigen-presenting cells presenting minor histocompatibility antigens. Prepulsing of the antigen-presenting cells with GLAT reduced the proliferative response, suggesting that GLAT inhibits antigen presentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the mechanisms involved in human gammadelta T-cell tolerance to self or to foreign antigens. Patients with congenital toxoplasmosis offer a unique opportunity to examine Vdelta2+ gammadelta T-cell tolerance. Analysis of gammadelta T cells in patients with congenital toxoplasmosis revealed evidence for anergy of these cells with or without clonal Vdelta2+ gammadelta T-cell expansion in the acute phase of the Toxoplasma infection. T cells in general were unresponsive and did not proliferate upon exposure to mitogens or to Toxoplasma lysate antigens or in response to live Toxoplasma-infected cells when the congenitally infected infants were 1 month of age, and they exhibited selective anergy to Toxoplasma lysate antigens and live Toxoplasma-infected cells when the infants were aged 5 months. During the chronic phase of congenital toxoplasmosis in the patients who were more than I year of age, the repertoires of the gammadelta T-cell receptors were found to be within normal ranges. In addition, in the chronic phase, the gammadelta T cells proliferated and secreted gamma-interferon in response to exposure to live Toxoplasmia-infected cells. By contrast, alphabeta T cells remained anergic. Vdelta2+ gammadelta T cells have been considered to undergo extrathymic maturation and thus to be subject to development of peripheral tolerance. Our findings indicate that Vdelta2+ gammadelta T-cell tolerance was lost in these infected infants earlier than alphabeta T-cell tolerance. These findings suggest that gammadelta T cells play a role in protection against Toxoplasma gondii in the chronic phase when congenitally infected children are more than 1 year of age, especially in those in whom alphabeta T cells continue to exhibit deficits in specific immune responses to Toxoplasma antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have generated a chimeric gene transfer vector that combines the simplicity of plasmids with the infectivity and long-term expression of retroviruses. We replaced the env gene of a Moloney murine leukemia virus-derived provirus by a foreign gene, generating a plasmid that upon transfer to tumor cells generates noninfectious retroviral particles carrying the transgene. We added to this plasmid an independent expression cassette comprising a cytomegalovirus promoter, an amphotropic retroviral envelope, and a polyadenylylation signal from simian virus 40. These constructs were designed to minimize the risk of recombination generating replication-competent retroviruses. Their only region of homology is a 157-bp sequence with 53% identity. We show that the sole transfection of this plasmid in various cell lines generates infectious but defective retroviral particles capable of efficiently infecting and expressing the transgene. The formation of infectious particles allows the transgene propagation in vitro. Eight days after transfection in vitro, the proportion of cells expressing the transgene is increased by 10-60 times. There was no evidence of replication-competent retrovirus generation in these experiments. The intratumoral injection of this plasmid, but not of the control vector lacking the env gene, led to foci of transgene-expressing cells, suggesting that the transgene had propagated in situ. Altogether, these "plasmoviruses" combine advantages of viral and non-viral vectors. They should be easy to produce in large quantity as clinical grade materials and should allow efficient and safe in situ targeting of tumor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of chronic hepatitis B virus (HBV) infections with the reverse transcriptase inhibitor lamivudine leads to a rapid decline in plasma viremia and provides estimates for crucial kinetic constants of HBV replication. We find that in persistently infected patients, HBV particles are cleared from the plasma with a half-life of approximately 1.0 day, which implies a 50% daily turnover of the free virus population. Total viral release into the periphery is approximately 10(11) virus particles per day. Although we have no direct measurement of the infected cell mass, we can estimate the turnover rate of these cells in two ways: (i) by comparing the rate of viral production before and after therapy or (ii) from the decline of hepatitis B antigen during treatment. These two independent methods give equivalent results: we find a wide distribution of half-lives for virus-producing cells, ranging from 10 to 100 days in different patients, which may reflect differences in rates of lysis of infected cells by immune responses. Our analysis provides a quantitative understanding of HBV replication dynamics in vivo and has implications for the optimal timing of drug treatment and immunotherapy in chronic HBV infection. This study also represents a comparison for recent findings on the dynamics of human immunodeficiency virus (HIV) infection. The total daily production of plasma virus is, on average, higher in chronic HBV carriers than in HIV-infected patients, but the half-life of virus-producing cells is much shorter in HIV. Most strikingly, there is no indication of drug resistance in HBV-infected patients treated for up to 24 weeks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of a human breast cancer cell line (MDA-MB-435) in nude mice with a recombinant adenovirus containing the human interferon (IFN) consensus gene, IFN-con1 (ad5/IFN), resulted in tumor regression in 100% of the animals. Tumor regression occurred when virus was injected either within 24 hr of tumor cell implantation or with established tumors. However, regression of the tumor was also observed in controls in which either the wild-type virus or a recombinant virus containing the luciferase gene was used, although tumor growth was not completely suppressed. Tumor regression was accompanied by a decrease in p53 expression. Two other tumors, the human myelogenous leukemic cell line K562 and the hamster melanoma tumor RPMI 1846, also responded to treatment but only with ad5/IFN. In the case of K562 tumors, there was complete regression of the tumor, and tumors derived from RPMI 1846 showed partial regression. We propose that the complete regression of the breast cancer with the recombinant virus ad5/IFN was the result of two events: viral oncolysis in which tumor cells are being selectively lysed by the replication-competent virus and the enhanced effect of expression of the IFN-con1 gene. K562 and RPMI 1846 tumors regressed only as a result of IFN gene therapy. This was confirmed by in vitro analysis. Our results indicate that a combination of viral oncolysis with a virus of low pathogenicity, itself resistant to the effects of IFN and IFN gene therapy, might be a fruitful approach to the treatment of a variety of different tumors, in particular breast cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasite-derived proteins expressed on the surface of erythrocytes infected with Plasmodium falciparum are important virulence factors, since they mediate binding of infected cells to diverse receptors on vascular endothelium and are targets of a protective immune response. They are difficult to study because they undergo rapid clonal antigenic variation in vitro, which precludes the derivation of phenotypically homogeneous cultures. Here we have utilized sequence-specific proteases to dissect the role of defined antigenic variants in binding to particular receptors. By selection of protease-resistant subpopulations of parasites on defined receptors we (i) confirm the high rate of antigenic variation in vitro; (ii) demonstrate that a single infected erythrocyte can bind to intercellular adhesion molecule 1, CD36, and thrombospondin; (iii) show that binding to intercellular adhesion molecule 1 and CD36 are functions of the variant antigen; and (iv) suggest that binding to thrombospondin may be mediated by other components of the infected erythrocyte surface.