186 resultados para epitope


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We cloned two genes, KIN1 and KIN2, encoding kinesin-II homologues from the ciliate Tetrahymena thermophila and constructed strains lacking either KIN1 or KIN2 or both genes. Cells with a single disruption of either gene showed partly overlapping sets of defects in cell growth, motility, ciliary assembly, and thermoresistance. Deletion of both genes resulted in loss of cilia and arrests in cytokinesis. Mutant cells were unable to assemble new cilia or to maintain preexisting cilia. Double knockout cells were not viable on a standard medium but could be grown on a modified medium on which growth does not depend on phagocytosis. Double knockout cells could be rescued by transformation with a gene encoding an epitope-tagged Kin1p. In growing cells, epitope-tagged Kin1p preferentially accumulated in cilia undergoing active assembly. Kin1p was also detected in the cell body but did not show any association with the cleavage furrow. The cell division arrests observed in kinesin-II knockout cells appear to be induced by the loss of cilia and resulting cell paralysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MAL proteolipid is a nonglycosylated integral membrane protein found in glycolipid-enriched membrane microdomains. In polarized epithelial Madin-Darby canine kidney cells, MAL is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin. MAL is thus part of the integral machinery for glycolipid-enriched membrane–mediated apical transport. At steady state, MAL is predominantly located in perinuclear vesicles that probably arise from the trans-Golgi network (TGN). To act on membrane traffic and to prevent their accumulation in the target compartment, integral membrane elements of the protein-sorting machinery should be itinerant proteins that cycle between the donor and target compartments. To establish whether MAL is an itinerant protein, we engineered the last extracellular loop of MAL by insertion of sequences containing the FLAG epitope or with sequences containing residues that became O-glycosylated within the cells or that displayed biotinylatable groups. The ectopic expression of these modified MAL proteins allowed us to investigate the surface expression of MAL and its movement through different compartments after internalization with the use of a combination of assays, including surface biotinylation, surface binding of anti-FLAG antibodies, neuraminidase sensitivity, and drug treatments. Immunofluorescence and flow cytometric analyses indicated that, in addition to its Golgi localization, MAL was also expressed on the cell surface, from which it was rapidly internalized. This retrieval implies transport through the endosomal pathway and requires endosomal acidification, because it can be inhibited by drugs such as chloroquine, monensin, and NH4Cl. Resialylation experiments of surface MAL treated with neuraminidase indicated that ∼30% of the internalized MAL molecules were delivered to the TGN, probably to start a new cycle of cargo transport. Together, these observations suggest that, as predicted for integral membrane members of the late protein transport machinery, MAL is an itinerant protein cycling between the TGN and the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viral fusion protein trimers can play a critical role in limiting lipids in membrane fusion. Because the trimeric oligomer of many viral fusion proteins is often stabilized by hydrophobic 4-3 heptad repeats, higher-order oligomers might be stabilized by similar sequences. There is a hydrophobic 4-3 heptad repeat contiguous to a putative oligomerization domain of Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64. We performed mutagenesis and peptide inhibition studies to determine if this sequence might play a role in catalysis of membrane fusion. First, leucine-to-alanine mutants within and flanking the amino terminus of the hydrophobic 4-3 heptad repeat motif that oligomerize into trimers and traffic to insect Sf9 cell surfaces were identified. These mutants retained their wild-type conformation at neutral pH and changed conformation in acidic conditions, as judged by the reactivity of a conformationally sensitive mAb. These mutants, however, were defective for membrane fusion. Second, a peptide encoding the portion flanking the GP64 hydrophobic 4-3 heptad repeat was synthesized. Adding peptide led to inhibition of membrane fusion, which occurred only when the peptide was present during low pH application. The presence of peptide during low pH application did not prevent low pH–induced conformational changes, as determined by the loss of a conformationally sensitive epitope. In control experiments, a peptide of identical composition but different sequence, or a peptide encoding a portion of the Ebola GP heptad motif, had no effect on GP64-mediated fusion. Furthermore, when the hemagglutinin (X31 strain) fusion protein of influenza was functionally expressed in Sf9 cells, no effect on hemagglutinin-mediated fusion was observed, suggesting that the peptide does not exert nonspecific effects on other fusion proteins or cell membranes. Collectively, these studies suggest that the specific peptide sequences of GP64 that are adjacent to and include portions of the hydrophobic 4-3 heptad repeat play a dynamic role in membrane fusion at a stage that is downstream of the initiation of protein conformational changes but upstream of lipid mixing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epithelial amiloride-sensitive sodium channel (ENaC) controls transepithelial Na+ movement in Na+-transporting epithelia and is associated with Liddle syndrome, an autosomal dominant form of salt-sensitive hypertension. Detailed analysis of ENaC channel properties and the functional consequences of mutations causing Liddle syndrome has been, so far, limited by lack of a method allowing specific and quantitative detection of cell-surface-expressed ENaC. We have developed a quantitative assay based on the binding of 125I-labeled M2 anti-FLAG monoclonal antibody (M2Ab*) directed against a FLAG reporter epitope introduced in the extracellular loop of each of the α, β, and γ ENaC subunits. Insertion of the FLAG epitope into ENaC sequences did not change its functional and pharmacological properties. The binding specificity and affinity (Kd = 3 nM) allowed us to correlate in individual Xenopus oocytes the macroscopic amiloride-sensitive sodium current (INa) with the number of ENaC wild-type and mutant subunits expressed at the cell surface. These experiments demonstrate that: (i) only heteromultimeric channels made of α, β, and γ ENaC subunits are maximally and efficiently expressed at the cell surface; (ii) the overall ENaC open probability is one order of magnitude lower than previously observed in single-channel recordings; (iii) the mutation causing Liddle syndrome (β R564stop) enhances channel activity by two mechanisms, i.e., by increasing ENaC cell surface expression and by changing channel open probability. This quantitative approach provides new insights on the molecular mechanisms underlying one form of salt-sensitive hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

H-2Kb-restricted tumor epitope peptides, including tyrosinase-related protein 2 residues 181–188 (TRP-2) and connexin 37 residues 52–59 (MUT1), were applied to permeability barrier-disrupted C57BL/6 (B6) mouse skin from which the stratum corneum of the epidermis had been removed by tape-stripping. This procedure primed tumor-specific cytotoxic T lymphocytes (CTLs) in the lymph nodes and spleen, protected mice against subsequent challenge with corresponding tumor cells, and suppressed the growth of established tumors. Preventive and therapeutic effectiveness was correlated with the frequency of tumor-specific CTL precursors. MHC class II Iab+ cells separated from tape-stripped skin, compared with those from intact skin, exhibited a strong antigen-presenting capacity for CTL, suggesting that CTL expansion after peptide application is primarily mediated by epidermal Langerhans cells. Thus, percutaneous peptide immunization via barrier-disrupted skin provides a simple and noninvasive means of inducing potent anti-tumor immunity which may be exploited for cancer immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleocapsid of hepatitis B virus (HBV), or HBcAg, is a highly symmetric structure formed by multiple dimers of a single core protein that contains potent T helper epitopes in its 183-aa sequence. Both factors make HBcAg an unusually strong immunogen and an attractive candidate as a carrier for foreign epitopes. The immunodominant c/e1 epitope on the capsid has been suggested as a superior location to convey high immunogenicity to a heterologous sequence. Because of its central position, however, any c/e1 insert disrupts the core protein’s primary sequence; hence, only peptides, or rather small protein fragments seemed to be compatible with particle formation. According to recent structural data, the epitope is located at the tips of prominent surface spikes formed by the very stable dimer interfaces. We therefore reasoned that much larger inserts might be tolerated, provided the individual parts of a corresponding fusion protein could fold independently. Using the green fluorescent protein (GFP) as a model insert, we show that the chimeric protein efficiently forms fluorescent particles; hence, all of its structurally important parts must be properly folded. We also demonstrate that the GFP domains are surface-exposed and that the chimeric particles elicit a potent humoral response against native GFP. Hence, proteins of at least up to 238 aa can be natively displayed on the surface of HBV core particles. Such chimeras may not only be useful as vaccines but may also open the way for high resolution structural analyses of nonassembling proteins by electron microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For efficient ligand binding, integrins must be activated. Specifically, a conformational change has been proposed in a ligand binding domain present within some integrins, the inserted (I) domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333–1340]. This proposal remains controversial, however, despite extensive crystal structure studies on the I domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333–1340; Liddington, R. & Bankston, L. (1998) Structure (London) 6, 937–938; Qu, A. & Leahy, D. J. (1996) Structure (London) 4, 931–942; and Baldwin, E. T., Sarver, R. W., Bryant, G. L., Jr., Curry, K. A., Fairbanks, M. B., Finzel, B. C., Garlick, R. L., Heinrikson, R. L., Horton, N. C. & Kelly, L. L. (1998) Structure (London) 6, 923–935]. By defining the residues present in the epitope of a mAb against the human Mac-1 integrin (αMβ2, CD11b/CD18) that binds only the active receptor, we provide biochemical evidence that the I domain itself undergoes a conformational change with activation. This mAb, CBRM1/5, binds the I domain very close to the ligand binding site in a region that is widely exposed regardless of activation as judged by reactivity with other antibodies. The conformation of the epitope differs in two crystal forms of the I domain, previously suggested to represent active and inactive receptor. Our data suggests that conformational differences in the I domain are physiologically relevant and not merely a consequence of different crystal lattice interactions. We also demonstrate that the transition between the two conformational states depends on species-specific residues at the bottom of the I domain, which are proposed to be in an interface with another integrin domain, and that this transition correlates with functional activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently derived a CD4-independent virus from HIV-1/IIIB, termed IIIBx, which interacts directly with the chemokine receptor CXCR4 to infect cells. To address the underlying mechanism, a cloned Env from the IIIBx swarm (8x) was used to produce soluble gp120. 8x gp120 bound directly to cells expressing only CXCR4, whereas binding of IIIB gp120 required soluble CD4. Using an optical biosensor, we found that CD4-induced (CD4i) epitopes recognized by mAbs 17b and 48d were more exposed on 8x than on IIIB gp120. The ability of 8x gp120 to bind directly to CXCR4 and to react with mAbs 17b and 48d in the absence of CD4 indicated that this gp120 exists in a partially triggered but stable state in which the conserved coreceptor-binding site in gp120, which overlaps with the 17b epitope, is exposed. Substitution of the 8x V3 loop with that from the R5 virus strain BaL resulted in an Env (8x-V3BaL) that mediated CD4-independent CCR5-dependent virus infection and a gp120 that bound to CCR5 in the absence of CD4. Thus, in a partially triggered Env protein, the V3 loop can change the specificity of coreceptor use but does not alter CD4 independence, indicating that these properties are dissociable. Finally, IIIBx was more sensitive to neutralization by HIV-positive human sera, a variety of anti-IIIB gp120 rabbit sera, and CD4i mAbs than was IIIB. The sensitivity of this virus to neutralization and the stable exposure of a highly conserved region of gp120 suggest new strategies for the development of antibodies and small molecule inhibitors to this functionally important domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mature immunologically competent dendritic cells are the most efficient antigen-presenting cells that powerfully activate T cells and initiate and sustain immune responses. Indeed, dendritic cells are able to efficiently capture antigens, express high levels of costimulatory molecules, and produce the combination of cytokines required to create a powerful immune response. They are also considered to be important in initiating autoimmune disease by efficiently presenting autoantigens to self-reactive T cells that, in this case, will mount a pathogenic autoimmune reaction. Triggering T cells is not a simple on–off procedure, as T cell receptor responds to minor changes in ligand with gradations of T cell activation and effector functions. These “misfit” peptides have been called Altered Peptide Ligands, and have been shown to have important biological significance. Here, we show that fully capable dendritic cells may present, upon natural antigen processing, a self-epitope with Altered Peptide Ligands features that can unexpectedly induce anergy in a human autoreactive T cell clone. These results indicate that presentation of a self-epitope by immunologically competent dendritic cells does not always mean “danger” and show a mechanism involved in the fine balance between activation and tolerance induction in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A protein engineering strategy based on efficient and focused mutagenesis implemented by codon-based mutagenesis was developed. Vitaxin, a humanized version of the antiangiogenic antibody LM609 directed against a conformational epitope of the αvβ3 integrin complex, was used as a model system. Specifically, focused mutagenesis was used in a stepwise fashion to rapidly improve the affinity of the antigen binding fragment by greater than 90-fold. In the complete absence of structural information about the Vitaxin-αvβ3 interaction, phage-expressed antibody libraries for all six Ig heavy and light chain complementarity-determining regions were expressed and screened by a quantitative assay to identify variants with improved binding to αvβ3. The Vitaxin variants in these libraries each contained a single mutation, and all 20 amino acids were introduced at each complementarity-determining region residue, resulting in the expression of 2,336 unique clones. Multiple clones displaying 2- to 13-fold improved affinity were identified. Subsequent expression and screening of a library of 256 combinatorial variants of the optimal mutations identified from the primary libraries resulted in the identification of multiple clones displaying greater than 50-fold enhanced affinity. These variants inhibited ligand binding to receptor more potently as demonstrated by inhibition of cell adhesion and ligand competition assays. Because of the limited mutagenesis and combinatorial approach, Vitaxin variants with enhanced affinity were identified rapidly and required the synthesis of only 2,592 unique variants. The use of such small focused libraries obviates the need for phage affinity selection approaches typically used, permitting the use of functional assays and the engineering of proteins expressed in mammalian cell culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyclonal antibodies were produced and purified that selectively react with a p53 epitope containing the murine phosphoserine-389 or the human phosphoserine-392 residue, but not the unphosphorylated epitope. These antibodies, termed alpha-392, were employed to demonstrate that the phosphorylation of this serine-389 residue in the p53 protein occurs in vivo in response to ultraviolet radiation of cells containing the p53 protein. After ultraviolet radiation of cells in culture, p53 levels increase and concomitantly serine-389 is phosphorylated in these cells. By contrast, the serine-389 phosphorylation of the p53 protein was not detected by these antibodies in the increased levels of p53 protein made in response to γ radiation or the treatment of cells with etoposide. These results demonstrate an ultraviolet responsive and specific phosphorylation site at serine-389 of the mouse or serine-392 of the human p53 protein. Previous studies have demonstrated that this phosphorylation of p53 activates the protein for specific DNA binding. This study demonstrates in vivo a unique phosphorylation site in the p53 protein that responds to a specific type of DNA damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T helper 1 cells play a major role in protective immunity against mycobacterial pathogens. Since the antigen (Ag) specificity of CD4+ human T cells is strongly controlled by HLA class II polymorphism, the immunogenic potential of candidate Ags needs to be defined in the context of HLA polymorphism. We have taken advantage of class II-deficient (Ab0) mice, transgenic for either HLA-DRA/B1*0301 (DR3) or HLA-DQB1*0302/DQA*0301 (DQ8) alleles. In these animals, all CD4+ T cells are restricted by the HLA molecule. We reported previously that human DR3-restricted T cells frequently recognize heat shock protein (hsp)65 of Mycobacterium tuberculosis, and only a single hsp65 epitope, p1–20. DR3.Ab0 mice, immunized with bacillus Calmette–Guérin or hsp65, developed T cell responses to M. tuberculosis, and recognized the same hsp65 epitope, p1–20. Hsp65-immunized DQ8.Ab0 mice mounted a strong response to bacillus Calmette–Guérin but not to p1–20. Instead, we identified three new DQ8-restricted T cell epitopes in the regions 171–200, 311–340, and 411–440. DR3.Ab0 mice immunized with a second major M. tuberculosis protein, Ag85 (composed of 85A, 85B, and 85C), also developed T cell responses against only one determinant, 85B p51–70, that was identified in this study. Importantly, subsequent analysis of human T cell responses revealed that HLA-DR3+, Ag85-reactive individuals recognize exactly the same peptide epitope as DR3.Ab0 mice. Strikingly, both DR3-restricted T cell epitopes represent the best DR3-binding sequences in hsp65 and 85B, revealing a strong association between peptide-immunodominance and HLA binding affinity. Immunization of DR3.Ab0 with the immunodominant peptides p1–20 and p51–70 induced T cell reactivity to M. tuberculosis. Thus, for two different Ags, T cells from DR3.Ab0 mice and HLA-DR3+ humans recognize the same immunodominant determinants. Our data support the use of HLA-transgenic mice in identifying human T cell determinants for the design of new vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lipooligosaccharide from Neisseria gonorrhoeae (GC), consists of lipid A, an oligosaccharide core and three branches, α, β, and γ. We report the cloning of the gene (lgtG, lipooligosaccharide glycosyl transferase G) encoding the glucosyl transferase of GC that initiates the β chain which consists of a lactosyl moiety. This gene contains a homopolymeric tract of cytidine [poly(C)] and we demonstrate that changes in the number of Cs in poly(C) account for the variation of β chain expression in different GC strains. Biochemical analyses and mass spectrometry clearly attribute the reactivity of mAb 2C7 to the presence of the lactosyl β chain. In addition, we demonstrate that in the absence of the lactosyl group, a phosphoethanolamine is added to generate a new antigenic epitope as evidenced by the gain of reactivity to mAb 2-L1–8. These results show that, like the α chain, the β chain of lipooligosaccharide is subject to antigenic variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The herpesvirus entry mediator C (HveC), previously known as poliovirus receptor-related protein 1 (PRR1), and the herpesvirus Ig-like receptor (HIgR) are the bona fide receptors employed by herpes simplex virus-1 and -2 (HSV-1 and -2) for entry into the human cell lines most frequently used in HSV studies. They share an identical ectodomain made of one V and two C2 domains and differ in transmembrane and cytoplasmic regions. Expression of their mRNA in the human nervous system suggests possible usage of these receptors in humans in the path of neuron infection by HSV. Glycoprotein D (gD) is the virion component that mediates HSV-1 entry into cells by interaction with cellular receptors. We report on the identification of the V domain of HIgR/PRR1 as a major functional region in HSV-1 entry by several approaches. First, the epitope recognized by mAb R1.302 to HIgR/PRR1, capable of inhibiting infection, was mapped to the V domain. Second, a soluble form of HIgR/PRR1 consisting of the single V domain competed with cell-bound full-length receptor and blocked virion infectivity. Third, the V domain was sufficient to mediate HSV entry, as an engineered form of PRR1 in which the two C2 domains were deleted and the V domain was retained and fused to its transmembrane and cytoplasmic regions was still able to confer susceptibility, although at reduced efficiency relative to full-length receptor. Consistently, transfer of the V domain of HIgR/PRR1 to a functionally inactive structural homologue generated a chimeric receptor with virus-entry activity. Finally, the single V domain was sufficient for in vitro physical interaction with gD. The in vitro binding was specific as it was competed both by antibodies to the receptor and by a mAb to gD with potent neutralizing activity for HSV-1 infectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type IIA rat brain sodium channel is composed of three subunits: a large pore-forming α subunit and two smaller auxiliary subunits, β1 and β2. The β subunits are single membrane-spanning glycoproteins with one Ig-like motif in their extracellular domains. The Ig motif of the β2 subunit has close structural similarity to one of the six Ig motifs in the extracellular domain of the cell adhesion molecule contactin (also called F3 or F11), which binds to the extracellular matrix molecules tenascin-C and tenascin-R. We investigated the binding of the purified sodium channel and the extracellular domain of the β2 subunit to tenascin-C and tenascin-R in vitro. Incubation of purified sodium channels on microtiter plates coated with tenascin-C revealed saturable and specific binding with an apparent Kd of ≈15 nM. Glutathione S-transferase-tagged fusion proteins containing various segments of tenascin-C and tenascin-R were purified, digested with thrombin to remove the epitope tag, immobilized on microtiter dishes, and tested for their ability to bind purified sodium channel or the epitope-tagged extracellular domain of β2 subunits. Both purified sodium channels and the extracellular domain of the β2 subunit bound specifically to fibronectin type III repeats 1–2, A, B, and 6–8 of tenascin-C and fibronectin type III repeats 1–2 and 6–8 of tenascin-R but not to the epidermal growth factor-like domain or the fibrinogen-like domain of these molecules. The binding of neuronal sodium channels to extracellular matrix molecules such as tenascin-C and tenascin-R may play a crucial role in localizing sodium channels in high density at axon initial segments and nodes of Ranvier or in regulating the activity of immobilized sodium channels in these locations.