186 resultados para T cell receptor


Relevância:

70.00% 70.00%

Publicador:

Resumo:

T cell receptor ζ (TcRζ)/CD3 ligation initiates a signaling cascade that involves src kinases p56lck and ζ-associated protein 70, leading to the phosphorylation of substrates such as TcRζ, Vav, SH2-domain-containing leukocyte protein 76 (SLP-76), cbl, and p120/130. FYN binding protein (FYB or p120/130) associates with p59fyn, the TcRζ/CD3 complex, and becomes tyrosine-phosphorylated in response to receptor ligation. In this study, we report the cDNA cloning of human and murine FYB and show that it is restricted in expression to T cells and myeloid cells and possesses an overall unique hydrophilic sequence with several tyrosine-based motifs, proline-based type I and type II SH3 domain binding motifs, several putative lysine/glutamic acid-rich nuclear localization motifs, and a SH3-like domain. In addition to binding the src kinase p59fyn, FYB binds specifically to the hematopoietic signaling protein SLP-76, an interaction mediated by the SLP-76 SH2 domain. In keeping with this, expression of FYB augmented interleukin 2 secretion from a T cell hybridoma, DC27.10, in response to TcRζ/CD3 ligation. FYB is therefore a novel hematopoietic protein that acts as a component of the FYN and SLP-76 signaling cascades in T cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antigen-specific effector T cells are prerequisite to immune protection, but because of the lack of effector cell-specific markers, their generation and differentiation has been difficult to study. We report that effector cells are highly enriched in a T cell subset that can be specifically identified in transgenic (T-GFP) mice expressing green fluorescent protein (GFP) under control of the murine CD4 promoter and proximal enhancer. Consistent with previous studies of these transcriptional control elements, GFP was strongly and specifically expressed in nearly all resting and short-term activated CD4+ and CD8+ T cells. However, when T-GFP mice were challenged with vaccinia virus, allogeneic tumor cells, or staphylococcal enterotoxin A, the cytotoxic and IFN-γ-producing T cells lost GFP expression. Upon T cell receptor (TCR) ligation by αCD3, sorted GFP+ cells fluxed calcium and proliferated vigorously. In contrast, GFP− effector cells showed a diminished calcium flux and did not proliferate. Instead, they underwent apoptosis unless supplied with exogenous IL-2. By reverse transcription–PCR analysis, the GFP− cells up-regulated the pro-apoptotic molecule, Fas-L, and down-regulated gene expression of the proximal TCR signaling molecule, CD3ζ, and c-jun, a component of the AP-1 transcription factor. Thus, differential regulation of TCR signaling may explain the divergent responses of naïve and effector T cells to antigen stimulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Myasthenia gravis (MG) is a T cell-regulated, antibody-mediated autoimmune disease. Two peptides representing sequences of the human acetylcholine receptor α-subunit, p195–212 and p259–271, previously were shown to stimulate the proliferation of peripheral blood lymphocytes of patients with MG and were found to be immunodominant T cell epitopes in SJL and BALB/c mice, respectively. Single amino acid-substituted analogs of p195–212 and p259–271, as well as a dual analog composed of the tandemly arranged two single analogs, were shown to inhibit, in vitro and in vivo, MG-associated autoimmune responses. Stimulation of T cells through the antigen-specific T cell receptor activates tyrosine kinases and phospholipase C (PLC). Therefore, in attempts to understand the mechanism of action of the analogs, we first examined whether the myasthenogenic peptides trigger tyrosine phosphorylation and activation of phospholipase C. For that purpose, we measured generation of inositol phosphates and tyrosine phosphorylation of PLC after stimulation of the p195–212- and p259–271-specific T cell lines with these myasthenogenic peptides. Both myasthenogenic peptides stimulated generation of inositol phosphates as well as tyrosine phosphorylation of PLC. However, the single and dual analogs, although inducing tyrosine phosphorylation of PLC, could not induce PLC activity. Furthermore, the single and dual analogs inhibited the induced PLC activity whereas they could not inhibit tyrosine phosphorylation of PLC that was caused by the myasthenogenic peptides. Thus, the altered peptides and the dual analog act as partial agonists. The down-regulation of PLC activity by the analogs may account for their capacity to inhibit in vitro MG-associated T cell responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

3.L2 T cell receptor transgenic T cells are activated by the 64–76 peptide of the mouse hemoglobin d β chain [Hb(64–76)], and their response is antagonized by the position 72 alanine substitution of this peptide (A72). To test the effect of this altered peptide ligand (APL) on 3.L2 T cell function in vivo, a transgene expressing A72 in major histocompatibility complex II positive cells (A72tg) has been introduced into mice. We demonstrate that 3.L2 T cells, when transferred to A72tg+ mice show a dramatically reduced proliferative response to Hb(64–76). Identical decreased responses were observed using T cells that developed in either A72tg+ or A72tg− hosts. This affect was not attributable to diminished precursor frequency, anergy, or competition for binding to I-Ek molecules. These results unequivocally demonstrate in vivo antagonism by an endogenous APL and characterize a class of self-peptides that, although inefficient in causing deletion in the thymus, effectively modulate T cell responses in the periphery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mature T cell receptor (TCR) repertoire is shaped by positive- and negative-selection events taking place during T cell development. These events are regulated by interactions between the TCR and major histocompatibility complex molecules presenting self-peptides. It has been shown that many antagonist peptides are efficient at mediating positive selection. In this study we analyzed the effects of a transgene encoding an antagonist peptide (influenza NP34) that is presented by H-2Db in a Tap-1-independent fashion in mice expressing the influenza NP68-specific TCR F5. We find that the transgenic peptide does not mediate positive or negative selection in F5+Tap-1−/− mice, but inhibits maturation of CD8+ single positive thymocytes in F5+Tap-1+ mice without inducing signs of negative selection. We conclude that antagonism of antigen recognition occurs not only at the level of mature T cells but also in T cell development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aberrations in the T cell repertoire with the emergence of oligoclonal populations have been described in patients with rheumatoid arthritis (RA). However, the extent of the repertoire perturbations as well as the underlying mechanisms are not known. We now have examined the diversity of the peripheral CD4 T cell repertoire by determining the frequencies of arbitrarily selected T cell receptor (TCR) β-chain sequences. Healthy individuals displayed a highly diverse repertoire, with a median frequency of individual TCR β-chain sequences of 1 in 2.4 × 107 CD4 T cells. In RA patients, the median TCR β-chain frequency was increased 10-fold, indicating marked contraction of the repertoire (P < 0.001). The loss in TCR diversity was not limited to CD4 memory T cells but also involved the compartment of naive T cells, suggesting that it reflected an abnormality in T cell repertoire formation and not a consequence of antigen recognition in the synovium. Also, control patients with chronic inflammatory disease such as hepatitis C expressed a diverse repertoire indistinguishable from that of normals. Telomere length studies indicated an increased replicative history of peripheral CD4 T cells in RA patients, suggesting an enhanced turnover within the CD4 compartment. Compared with age-matched controls, terminal restriction fragment sizes were 1.7 kilobases shorter (P < 0.001). These data demonstrate an altered CD4 T cell homeostasis in RA that may contribute to the autoimmune response as well as to the immunodeficiency in these patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The peptides bound to class II major histocompatibility complex (MHC) molecules extend out both ends of the peptide binding groove. This structural feature provided the opportunity to design multivalent polypeptide chains that cross-link class II MHC molecules through multiple, repetitive MHC binding sites. By using recombinant techniques, polypeptide oligomers were constructed that consist of up to 32 copies of an HLA-DR1-restricted T cell epitope. The epitope HA306–318, derived from influenza virus hemagglutinin, was connected by 12- to 36-aa long spacer sequences. These oligomers were found to cross-link soluble HLA-DR1 molecules efficiently and, upon binding to the MHC molecules of a monocyte line, to trigger signal transduction indicated by the enhanced expression of some cell surface molecules. A particularly strong effect was evident in the T cell response. A hemagglutinin-specific T cell clone recognized these antigens at concentrations up to three to four orders of magnitude lower than that of the peptide or the hemagglutinin protein. Both signal transduction in the monocyte and the proliferative response of the T cell were affected greatly by the length of the oligomer (i.e., the number of repetitive units) and the distance of the epitopes within the oligomer (spacing). Thus, the formation of defined clusters of T cell receptor/MHC/peptide antigen complexes appears to be crucial for triggering the immune response and can be used to enhance the antigenicity of a peptide antigen by oligomerizing the epitope.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Binding of dimeric immunoglobulin (Ig)A to the polymeric Ig receptor (pIgR) stimulates transcytosis of pIgR across epithelial cells. Through the generation of a series of pIgR chimeric constructs, we have tested the ability of ligand to promote receptor dimerization and the subsequent role of receptor dimerization on its intracellular trafficking. Using the cytoplasmic domain of the T cell receptor-ζ chain as a sensitive indicator of receptor oligomerization, we show that a pIgR:ζ chimeric receptor expressed in Jurkat cells initiates a ζ-specific signal transduction cascade when exposed to dimeric or tetrameric IgA, but not when exposed to monomeric IgA. In addition, we replaced the pIgR’s transmembrane domain with that of glycophorin A to force dimerization or with a mutant glycophorin transmembrane domain to prevent dimerization. Forcing dimerization stimulated transcytosis of the chimera, whereas preventing dimerization abolished ligand-stimulated transcytosis. We conclude that binding of dimeric IgA to the pIgR induces its dimerization and that this dimerization is necessary and sufficient to stimulate pIgR transcytosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T cell activation rapidly and transiently regulates the functional activity of integrin receptors. Stimulation of CD3/T cell receptor, CD2 or CD28, as well as activation with phorbol esters, can induce within minutes an increase in β1 integrin-mediated adhesion of T cells to fibronectin. In this study, we have produced and utilized a mutant of the Jurkat T cell line, designated A1, that lacks protein and mRNA expression of the β1 integrin subunit but retains normal levels of CD2, CD3, and CD28 on the cell surface. Activation-dependent adhesion of A1 cells to fibronectin could be restored upon transfection of a wild-type human β1 integrin cDNA. Adhesion induced by phorbol 12-myristate 13-acetate-, CD3-, CD2-, and CD28 stimulation did not occur if the carboxy-terminal five amino acids of the β1 tail were truncated or if either of two well-conserved NPXY motifs were deleted. Scanning alanine substitutions of the carboxy-terminal five amino acids demonstrated a critical role for the tyrosine residue at position 795. The carboxy-terminal truncation and the NPXY deletions also reduced adhesion induced by direct stimulation of the β1 integrin with the activating β1 integrin-specific mAb TS2/16, although the effects were not as dramatic as observed with the other integrin-activating signals. These results demonstrate a vital role for the amino-terminal NPXY motif and the carboxy-terminal end of the β1 integrin cytoplasmic domain in activation-dependent regulation of integrin-mediated adhesion in T cells. Furthermore, the A1 cell line represents a valuable new cellular reagent for the analysis of β1 integrin structure and function in human T cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-Å resolution. In the complex, helices II and III of domain D interact with the variable region of the Fab heavy chain (VH) through framework residues, without the involvement of the hypervariable regions implicated in antigen recognition. The contact residues are highly conserved in human VH3 antibodies but not in other families. The contact residues from domain D also are conserved among all SpA Ig-binding domains, suggesting that each could bind in a similar manner. Features of this interaction parallel those reported for staphylococcal enterotoxins that are superantigens for many T cells. The structural homology between Ig VH regions and the T-cell receptor Vβ regions facilitates their comparison, and both types of interactions involve lymphocyte receptor surface remote from the antigen binding site. However, T-cell superantigens reportedly interact through hydrogen bonds with T-cell receptor Vβ backbone atoms in a primary sequence-independent manner, whereas SpA relies on a sequence-restricted conformational binding with residue side chains, suggesting that this common bacterial pathogen has adopted distinct molecular recognition strategies for affecting large sets of B and T lymphocytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T cells recognize antigen by formation of a trimolecular complex in which the T-cell receptor (TCR) recognizes a specific peptide antigen within the groove of a major histocompatibility complex (MHC) molecule. It has generally been assumed that T-cell recognition of two distinct MHC–antigen complexes is due to similarities in the three-dimensional structure of the complexes. Here we report results of experiments examining the crossreactivity of TCRs recognizing the myelin basic protein peptide MBPp85–99 and several of its analogs in the context of MHC. We demonstrate that single conservative amino acid substitutions of the antigenic peptide at the predominant TCR contact residues at positions 91 and 93 totally abrogate reactivity of specific T-cell clones. Yet, when a conservative substitution is made at position 91 concomitant with a substitution at position 93, the T-cell clones regain reactivity equivalent with that of the original stimulating peptide. Thus, the exact nature of the amino acid side chains engaging one TCR functional pocket may change the apparent selectivity of the other predominant TCR functional pocket, thus suggesting a remarkable degree of receptor plasticity. This ability of the TCR–MHC–peptide complex to undergo conformational changes provides a conceptual framework for reconciling the apparent paradox of the extreme selectivity of the TCR and its remarkable crossreactivity with different MHC–peptide complexes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this report, we have analyzed the human T cell repertoire derived in vivo from a single T cell precursor. A unique case of X-linked severe combined immunodeficiency in which a reverse mutation occurred in an early T cell precursor was analyzed to this end. It was determined that at least 1,000 T cell clones with unique T cell receptor-β sequences were generated from this precursor. This diversity seems to be stable over time and provides protection from infections in vivo. A similar estimation was obtained in an in vitro murine model of T cell generation from a single cell precursor. Overall, our results document the large diversity potential of T cell precursors and provide a rationale for gene therapy of the block of T cell development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previously, we established that natural killer (NK) cells from C57BL/6 (B6), but not BALB/c, mice lysed Chinese hamster ovary (CHO) cells, and we mapped the locus that determines this differential CHO-killing capacity to the NK gene complex on chromosome 6. The localization of Chok in the NK gene complex suggested that it may encode either an activating or an inhibitory receptor. Here, results from a lectin-facilitated lysis assay predicted that Chok is an activating B6 NK receptor. Therefore, we immunized BALB/c mice with NK cells from BALB.B6–Cmv1r congenic mice and generated a mAb, designated 4E4, that blocked B6-mediated CHO lysis. mAb 4E4 also redirected lysis of Daudi targets, indicating its reactivity with an activating NK cell receptor. Furthermore, only the 4E4+ B6 NK cell subset mediated CHO killing, and this lysis was abrogated by preincubation with mAb 4E4. Flow cytometric analysis indicated that mAb 4E4 specifically reacts with Ly-49D but not Ly-49A, B, C, E, G, H, or I transfectants. Finally, gene transfer of Ly-49DB6 into BALB/c NK cells conferred cytotoxic capacity against CHO cells, thus establishing that the Ly-49D receptor is sufficient to activate NK cells to lyse this target. Hence, Ly-49D is the Chok gene product and is a mouse NK cell receptor capable of directly triggering natural killing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mature immunologically competent dendritic cells are the most efficient antigen-presenting cells that powerfully activate T cells and initiate and sustain immune responses. Indeed, dendritic cells are able to efficiently capture antigens, express high levels of costimulatory molecules, and produce the combination of cytokines required to create a powerful immune response. They are also considered to be important in initiating autoimmune disease by efficiently presenting autoantigens to self-reactive T cells that, in this case, will mount a pathogenic autoimmune reaction. Triggering T cells is not a simple on–off procedure, as T cell receptor responds to minor changes in ligand with gradations of T cell activation and effector functions. These “misfit” peptides have been called Altered Peptide Ligands, and have been shown to have important biological significance. Here, we show that fully capable dendritic cells may present, upon natural antigen processing, a self-epitope with Altered Peptide Ligands features that can unexpectedly induce anergy in a human autoreactive T cell clone. These results indicate that presentation of a self-epitope by immunologically competent dendritic cells does not always mean “danger” and show a mechanism involved in the fine balance between activation and tolerance induction in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T cell recognition typically involves both the engagement of a specific T cell receptor with a peptide/major histocompatibility complex (MHC) and a number of accessory interactions. One of the most important interactions is between the integrin lymphocyte function-associated antigen 1 (LFA-1) on the T cell and intracellular adhesion molecule 1 (ICAM-1) on an antigen-presenting cell. By using fluorescence video microscopy and an ICAM-1 fused to a green fluorescent protein, we find that the elevation of intracellular calcium in the T cell that is characteristic of activation is followed almost immediately by the rapid accumulation of ICAM-1 on a B cell at a tight interface between the two cells. This increased density of ICAM-1 correlates with the sustained elevation of intracellular calcium in the T cell, known to be critical for activation. The use of peptide/MHC complexes and ICAM-1 on a supported lipid bilayer to stimulate T cells also indicates a major role for ICAM-1/LFA-1 in T cell activation but, surprisingly, not for adhesion, as even in the absence of ICAM-1 the morphological changes and adhesive characteristics of an activated T cell are seen in this system. We suggest that T cell antigen receptor-mediated recognition of a very small number of MHC/peptide complexes could trigger LFA-1/ICAM-1 clustering and avidity regulation, thus amplifying and stabilizing the production of second messengers.