79 resultados para REVEALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two zygotic genes, twist and snail, are indispensable for the correct establishment of the mesoderm primordium in the early Drosophila embryo. They are also needed for morphogenesis and differentiation of the mesoderm. Both genes code for transcription factors with different, albeit complementary, functions. Therefore, to understand the early development of the mesoderm, it will be necessary to identify and study the genes regulated by twist and snail. We have searched for downstream genes using a subtractive cDNA library enriched in sequences expressed in the mesoderm. We have isolated sequences that correspond to 13 novel early mesoderm genes. These novel genes show a variety of expression patterns and also differ in their dependence on twist and snail functions. This indicates that the regulation of early gene activity in the mesoderm is more complex than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mosquito (Aedes aegypti) vitellogenin receptor (AaVgR) is a large membrane-bound protein (214 kDa when linearized) that mediates internalization of vitellogenin, the major yolk-protein precursor, by oocytes during egg development. We have cloned and sequenced two cDNA fragments encompassing the entire coding region of AaVgR mRNA, to our knowledge the first insect VgR sequence to be reported. The 7.3-kb AaVgR mRNA is present only in female germ-line cells and is abundant in previtellogenic oocytes, suggesting that the AaVgR gene is expressed early in oocyte differentiation. The deduced amino acid sequence predicts a 202.7-kDa protein before posttranslational processing. The AaVgR is a member of the low density lipoprotein receptor superfamily, sharing significant homology with the chicken (Gallus gallus) VgR and particularly the Drosophila melanogaster yolk protein receptor, in spite of a very different ligand for the latter. Distance-based phylogenetic analyses suggest that the insect VgR/yolk protein receptor lineage and the vertebrate VgR/low density lipoprotein receptor lineage diverged before the bifurcation of nematode and deuterostome lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteasomes are the multi-subunit protease thought to play a key role in the generation of peptides presented by major histocompatibility complex (MHC) class I molecules. When cells are stimulated with interferon gamma, two MHC-encoded subunits, low molecular mass polypeptide (LMP) 2 and LMP7, and the MECL1 subunit encoded outside the MHC are incorporated into the proteasomal complex, presumably by displacing the housekeeping subunits designated Y, X, and Z, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. Here we show that the mouse gene encoding the Z subunit (Psmb7) maps to the paracentromeric region of chromosome 2. Inspection of the mouse loci adjacent to the Psmb7 locus provides evidence that the paracentromeric region of chromosome 2 and the MHC region on chromosome 17 most likely arose as a result of a duplication that took place at an early stage of vertebrate evolution. The traces of this duplication are also evident in the homologous human chromosome regions (6p21.3 and 9q33-q34). These observations have implications in understanding the genomic organization of the present-day MHC and offer insights into the origin of the MHC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several recent reports indicate that mobile elements are frequently found in and flanking many wild-type plant genes. To determine the extent of this association, we performed computer-based systematic searches to identify mobile elements in the genes of two "model" plants, Oryza sativa (domesticated rice) and Arabidopsis thaliana. Whereas 32 common sequences belonging to nine putative mobile element families were found in the noncoding regions of rice genes, none were found in Arabidopsis genes. Five of the nine families (Gaijin, Castaway, Ditto, Wanderer, and Explorer) are first described in this report, while the other four were described previously (Tourist, Stowaway, p-SINE1, and Amy/LTP). Sequence similarity, structural similarity, and documentation of past mobility strongly suggests that many of the rice common sequences are bona fide mobile elements. Members of four of the new rice mobile element families are similar in some respects to members of the previously identified inverted-repeat element families, Tourist and Stowaway. Together these elements are the most prevalent type of transposons found in the rice genes surveyed and form a unique collection of inverted-repeat transposons we refer to as miniature inverted-repeat transposable elements or MITEs. The sequence and structure of MITEs are clearly distinct from short or long interspersed nuclear elements (SINEs or LINEs), the most common transposable elements associated with mammalian nuclear genes. Mobile elements, therefore, are associated with both animal and plant genes, but the identity of these elements is strikingly different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coding sequence of rat MEK kinase 1 (MEKK1) has been determined from multiple, independent cDNA clones. The cDNA is full-length based on the presence of stop codons in all three reading frames of the 5' untranslated region. Probes from the 5' and the 3' coding sequences both hybridize to a 7-kb mRNA. The open reading frame is 4.5 kb and predicts a protein with molecular mass of 161,225 Da, which is twice the size of the previously published MEKK1 sequence and reveals 801 amino acids of novel coding sequence. The novel sequence contains two putative pH domains, two proline-rich regions, and a cysteine-rich region. Antisera to peptides derived from this new sequence recognize an endogenous protein in human and rodent cells of 195 kDa, consistent with the size of the expressed rat MEKK1 clone. Endogenous and recombinant rat MEKK1 are enriched in membranes; little of either is found in soluble fractions. Expression of recombinant rat MEKK1 leads to activation of three mitogen-activated protein kinase modules in the order c-Jun N-terminal kinase/stress-activated protein kinase > p38 mitogen-activated protein kinase = extracellular signal-regulated kinase 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For catalytic activity, nitric oxide synthases (NOSs) must be dimeric. Previous work revealed that the requirements for stable dimerization included binding of tetrahydrobiopterin (BH4), arginine, and heme. Here we asked what function is served by dimerization. We assessed the ability of individually inactive mutants of mouse inducible NOS (iNOS; NOS2), each deficient in binding a particular cofactor or cosubstrate, to complement each other by generating NO upon cotransfection into human epithelial cells. The ability of the mutants to homodimerize was gauged by gel filtration and/or PAGE under partially denaturing conditions, both followed by immunoblot. Their ability to heterodimerize was assessed by coimmunoprecipitation. Heterodimers that contained only one COOH-terminal hemimer and only one BH4-binding site could both form and function, even though the NADPH-, FAD-, and FMN-binding domains (in the COOH-terminal hemimer) and the BH4-binding sites (in the NH2-terminal hemimer) were contributed by opposite chains. Heterodimers that contained only one heme-binding site (Cys-194) could also form, either in cis or in trans to the nucleotide-binding domains. However, for NO production, both chains had to bind heme. Thus, NO production by iNOS requires dimerization because the active site requires two hemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PCR amplification of template DNAs extracted from mixed, naturally occurring microbial populations, using oligonucleotide primers complementary to highly conserved sequences, was used to obtain a large collection of diverse RNase P RNA-encoding genes. An alignment of these sequences was used in a comparative analysis of RNase P RNA secondary and tertiary structure. The new sequences confirm the secondary structure model based on sequences from cultivated organisms (with minor alterations in helices P12 and P18), providing additional support for nearly every base pair. Analysis of sequence covariation using the entire RNase P RNA data set reveals elements of tertiary structure in the RNA; the third nucleotides (underlined) of the GNRA tetraloops L14 and L18 are seen to interact with adjacent Watson-Crick base pairs in helix P8, forming A:G/C or G:A/U base triples. These experiments demonstrate one way in which the enormous diversity of natural microbial populations can be used to elucidate molecular structure through comparative analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific signal transduction function of the gamma c subunit in the interleukin (IL) 2, IL-4, IL-7, IL-9, and IL-15 receptor complexes remains undefined. The present structure-function analyses demonstrated that the entire cytoplasmic tail of gamma c could be functionally replaced in the IL-2 receptor (IL-2R) signaling complex by a severely truncated erythropoietin receptor cytoplasmic domain lacking tyrosine residues. Heterodimerization of IL-2R beta with either gamma c or the truncated erythropoietin receptor chain led to an array of specific signals normally derived from the native IL-2R despite the substitution of Janus kinase JAK2 for JAK3 in the receptor complex. These findings thus suggest a model in which the gamma c subunit serves as a common and generic "trigger" chain by providing a nonspecific Janus kinase for signaling program initiation, while signal specificity is determined by the unique "driver" subunit in each of the gamma c- containing receptor complexes. Furthermore, these results may have important functional implications for the asymmetric design of many cytokine receptor complexes and the evolutionary design of receptor subfamilies that share common trigger or driver subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cassette mutagenesis was used to identify side chains in human interleukin 5 (hIL-5) that mediate binding to hIL-5 receptor alpha chain (hIL-5R alpha). A series of single alanine substitutions was introduced into a stretch of residues in the C-terminal region, including helix D, which previously had been implicated in receptor alpha chain recognition and which is aligned on the IL-5 surface so as to allow the topography of receptor binding residues to be examined. hIL-5 and single site mutants were expressed in COS cells, their interactions with hIL-5R alpha were measured by a sandwich surface plasmon resonance biosensor method, and their biological activities were measured by an IL-5-dependent cell proliferation assay. A pattern of mutagenesis effects was observed, with greatest impact near the interface between the two four-helix bundles of IL-5, in particular at residues Glu-110 and Trp-111, and least at the distal ends of the D helices. This pattern suggests the possibility that residues near the interface of the two four-helix bundles in hIL-5 comprise a central patch or hot spot, which constitutes an energetically important alpha chain recognition site. This hypothesis suggests a structural explanation for the 1:1 stoichiometry observed for the complex of hIL-5 with hIL-5R alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution physical maps of the genomes of three Rhodobacter capsulatus strains, derived from ordered cosmid libraries, were aligned. The 1.2-Mb segment of the SB1003 genome studied here is adjacent to a 1-Mb region analyzed previously [Fonstein, M., Nikolskaya, T. & Haselkorn, H. (1995) J. Bacteriol. 177, 2368-2372]. Probes derived from the ordered cosmid set of R. capsulatus SB1003 were used to link cosmids from the St. Louis and 2.3.1 strain libraries. Cosmids selected this way did not merge into a single contig but formed several unlinked groups. EcoRV restriction maps of the ordered cosmids were then constructed using lambda terminase and fused to derive fragments of the chromosomal map. In order to link these fragments, their ends were transcribed to produce secondary probes for hybridization to gridded cosmid libraries of the same strains. This linking reduced the number of subcontigs to three for the St. Louis strain and one for the 2.3.1 strain. Hybridization of the same probes back to the ordered cosmid set of SB1003 positioned the subcontigs on the high-resolution physical map of SB1003. The final alignment of the restriction maps shows numerous large and small translocations in this 1.2-Mb chromosomal region of the three Rhodobacter strains. In addition, the chromosomes of the three strains, whose fine-structure maps can now be compared over 2.2 Mb, are seen to contain regions of 15-80 kb in which restriction sites are highly polymorphic, interspersed among regions in which the positions of restriction sites are highly conserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoprotein(a) [Lp(a)] is a lipoprotein formed by the disulfide linkage of apolipoprotein (apo) B100 of a low density lipoprotein particle to apolipoprotein(a). Prior studies have suggested that one of the C-terminal Cys residues of apo-B100 is involved in the disulfide linkage of apo-B100 to apo(a). To identify the apo-B100 Cys residue involved in the formation of Lp(a), we constructed a yeast artificial chromosome (YAC) spanning the human apo-B gene and used gene-targeting techniques to change Cys-4326 to Gly. The mutated YAC DNA was used to generate transgenic mice expressing the mutant human apo-B100 (Cys4326Gly). Unlike the wild-type human apo-B100, the mutant human apo-B100 completely lacked the ability to bind to apo(a) and form Lp(a). This study demonstrates that apo-B100 Cys-4326 is required for the assembly of Lp(a) and shows that gene targeting in YACs, followed by the generation of transgenic mice, is a useful approach for analyzing the structure of large proteins coded for by large genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe cell cycle-regulatory protein suc1, named as the suppressor of cdc2 temperature-sensitive mutations, is essential for cell cycle progression. To understand suc1 structure-function relationships and to help resolve conflicting interpretations of suc1 function based on genetic studies of suc1 and its functional homologs in both lower and higher eukaryotes, we have determined the crystal structure of the beta-interchanged suc1 dimer. Each domain consists of three alpha-helices and a four-stranded beta-sheet, completed by the interchange of terminal beta-strands between the two subunits. This beta-interchanged suc1 dimer, when compared with the beta-hairpin single-domain folds of suc1, reveals a beta-hinge motif formed by the conserved amino acid sequence HVPEPH. This beta-hinge mediates the subunit conformation and assembly of suc1: closing produces the intrasubunit beta-hairpin and single-domain fold, whereas opening leads to the intersubunit beta-strand interchange and interlocked dimer assembly reported here. This conformational switch markedly changes the surface accessibility of sequence-conserved residues available for recognition of cyclin-dependent kinase, suggesting a structural mechanism for beta-hinge-mediated regulation of suc1 biological function. Thus, suc1 belongs to the family of domain-swapping proteins, consisting of intertwined and dimeric protein structures in which the dual assembly modes regulate their function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disruption of retinoic acid receptor (RAR) gamma in F9 embryonal carcinoma cells leads to aberrent differentiation and reduced activation of expression of several all-trans-retinoic acid (RA)-induced genes. We have analyzed the expression of several additional RA-responsive genes in RAR alpha- and RAR gamma-null F9 cells. The RA-induced activation of Cdx1, Gap43, Stra4, and Stra6 was specifically impaired in RAR gamma-null cells, supporting the idea that each RAR may regulate distinct subsets of target genes. To further investigate the role of RAR gamma in F9 cell differentiation, "rescue" cell lines reexpressing RAR gamma 2 or overexpressing either RAR alpha 1 or RAR beta 2 were established in RAR gamma-null cells. Reexpression of RAR gamma or overexpression of RAR alpha restored both target-gene activation and the differentiation potential. In contrast, over-expression of RAR beta only poorly restored differentiation, although it could replace RAR gamma for the activation of target genes. Functional redundancy between the various RARs is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannitol is the most abundant sugar alcohol in nature, occurring in bacteria, fungi, lichens, and many species of vascular plants. Celery (Apium graveolens L.), a plant that forms mannitol photosynthetically, has high photosynthetic rates thought to results from intrinsic differences in the biosynthesis of hexitols vs. sugars. Celery also exhibits high salt tolerance due to the function of mannitol as an osmoprotectant. A mannitol catabolic enzyme that oxidizes mannitol to mannose (mannitol dehydrogenase, MTD) has been identified. In celery plants, MTD activity and tissue mannitol concentration are inversely related. MTD provides the initial step by which translocated mannitol is committed to central metabolism and, by regulating mannitol pool size, is important in regulating salt tolerance at the cellular level. We have now isolated, sequenced, and characterized a Mtd cDNA from celery. Analyses showed that Mtd RNA was more abundant in cells grown on mannitol and less abundant in salt-stressed cells. A protein database search revealed that the previously described ELI3 pathogenesis-related proteins from parsley and Arabidopsis are MTDs. Treatment of celery cells with salicylic acid resulted in increased MTD activity and RNA. Increased MTD activity results in an increased ability to utilize mannitol. Among other effects, this may provide an additional source of carbon and energy for response to pathogen attack. These responses of the primary enzyme controlling mannitol pool size reflect the importance of mannitol metabolism in plant responses to divergent types of environmental stress.