186 resultados para T cell receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The B-cell receptor CD22 binds sialic acid linked alpha-2-6 to terminal galactose residues on N-linked oligosaccharides associated with several cell-surface glycoproteins. The first of these sialoglycoproteins to be identified was the receptor-linked phosphotyrosine phosphatase CD45, which is required for antigen/CD3-induced T-cell activation. In the present work, we examine the effect of interaction between the extracellular domain of CD45 and CD22 on T-cell activation. Using soluble CD22-immunoglobulin fusion proteins and T cells expressing wild-type and chimeric CD45 forms, we show that engagement of CD45 by soluble CD22 can modulate early T-cell signals in antigen receptor/CD3-mediated stimulation. We also show that addition of sialic acid by beta-galactoside alpha-2,6-sialyltransferase to the CD22 molecule abrogates interactions between CD22 and its ligands. Together, these observations provide direct evidence for a functional role of the interaction between the extracellular domain of CD45 and a natural ligand and suggest another regulatory mechanism for CD22-mediated ligand engagement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In pre-B lymphocytes, productive rearrangement of Ig light chain genes allows assembly of the B cell receptor (BCR), which selectively promotes further developmental maturation through poorly defined transmembrane signaling events. Using a novel in vitro system to study immune tolerance during development, we find that BCR reactivity to auto-antigen blocks this positive selection, preventing down-regulation of light chain gene recombination and promoting secondary light chain gene rearrangements that often alter BCR specificity, a process called receptor editing. Under these experimental conditions, self-antigen induces secondary light chain gene rearrangements in at least two-thirds of autoreactive immature B cells, but fails to accelerate cell death at this stage. These data suggest that in these cells the mechanism of immune tolerance is receptor selection rather than clonal selection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IL-4 receptor α chain (IL-4Rα)-deficient mice were generated by gene-targeting in BALB/c embryonic stem cells. Mutant mice showed a loss of IL-4 signal transduction and functional activity. The lack of IL-4Rα resulted in markedly diminished, but not absent, TH2 responses after infection with the helminthic parasite Nippostrongylus brasiliensis. CD4+, CD62L-high, and CD62L-low T cell populations from uninfected IL-4Rα−/− mice were isolated by cell sorting. Upon primary stimulation by T cell receptor cross-linkage, the CD62L-low, but not the CD62L-high, cells secreted considerable amounts of IL-4, which was strikingly enhanced upon 4-day culture with anti-CD3 in the presence or absence of IL-4. CD62L-low cells isolated from IL-4Rα−/−, β2-microglobulin−/− double homozygous mice produced less IL-4 than did either IL-4Rα−/− or wild-type mice. These results indicate that an IL-4-independent, β2-microglobulin-dependent pathway exists through which the CD62L-low CD4+ population has acquired IL-4-producing capacity in vivo, strongly suggesting that these cells are NK T cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations in Btk result in the B cell immunodeficiencies X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Btk is a critical component of signaling pathways regulating B cell development and function. We used a genetic approach to determine whether Btk is also limiting for these processes. One allele of a murine Btk transgene expressed a dosage of Btk (25% of endogenous levels in splenic B cells) sufficient to restore normal numbers of phenotypically mature conventional B cells in xid mice. 2,4,6-trinitrophenyl–Ficoll response, anti-IgM-induced proliferation, B1 cell development, and serum IgM and IgG3 levels remained significantly impaired in these animals. B cells from Btk −/− transgenic mice also responded poorly to anti-IgM, indicating that the xid mutation does not create a dominant negative form of Btk. Response to 2,4,6-trinitrophenyl–Ficoll and B cell receptor cross-linking were increased 3- to 4-fold in xid mice homozygous for the transgene. These results demonstrate that Btk is a limiting component of B cell antigen receptor signaling pathways and suggest that B cell development and response to antigen may require different levels of Btk activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the interaction of a T cell with an antigen-presenting cell (APC), several receptor ligand pairs, including the T cell receptor (TCR)/major histocompatibility complex (MHC), accumulate at the T cell/APC interface in defined geometrical patterns. This accumulation depends on a movement of the T cell cortical actin cytoskeleton toward the interface. Here we study the involvement of the guanine nucleotide exchange factor vav in this process. We crossed 129 vav−/− mice with B10/BR 5C.C7 TCR transgenic mice and used peptide-loaded APCs to stimulate T cells from the offspring. We found that the accumulation of TCR/MHC at the T cell/APC interface and the T cell actin cytoskeleton rearrangement were clearly defective in these vav+/− mice. A comparable defect in superantigen-mediated T cell activation of T cells from non-TCR transgenic 129 mice was also observed, although in this case it was more apparent in vav−/− mice. These data indicate that vav is an essential regulator of cytoskeletal rearrangements during T cell activation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signaling through the interleukin 2 receptor (IL-2R) involves phosphorylation of several proteins including Jak3, STAT5, and, in preactivated cells, STAT3. In the present study, we examined the functional status of the IL-2R-associated Jak/STAT pathway in malignant T lymphocytes from advanced skin-based lymphomas: anaplastic large T-cell lymphoma (ALCL) and Sezary syndrome (SzS). Proliferation of three ALCL cell lines (PB-1, 2A, and 2B) was partially inhibited by rapamycin, a blocker of some of the signals mediated by IL-2R, but not by cyclosporin A, FK-506, and prednisone, which suppress signals mediated by the T-cell receptor. All the cell lines expressed on their surface the high-affinity IL-2R (alpha, beta, and gamma c chains). They showed basal, constitutive phosphorylation, and coassociation of Jak3, STAT5, and STAT3. Weak basal phosphorylation of IL-2R gamma c was also detected. In regard to SzS, peripheral blood mononuclear cells from 10 of 14 patients showed basal phosphorylation of Jak3, accompanied by phosphorylation of STAT5 in 9 patients, and STAT3 in 4 patients. However, in vitro overnight culture of SzS cells without exogenous cytokines resulted in markedly decreased Jak3 and STAT5 phosphorylation, which could be reversed by stimulation with IL-2. This indicates that the basal phosphorylation of Jak3 and STAT5 in freshly isolated SzS cells is induced rather than constitutive. The basal activation of the Jak/STAT pathway involved in IL-2R signal transduction in ALCL and SzS cells reported here suggests that this pathway may play a role in the pathogenesis of cutaneous T-cell lymphomas, although the mechanism (induced versus constitutive) may vary between different lymphoma types.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interaction of the antigen-specific receptor of T lymphocytes with its antigenic ligand can lead either to cell activation or to a state of profound unresponsiveness (anergy). Although subtle changes in the nature of the ligand or of the antigen-presenting cell have been shown to affect the outcome of T cell receptor ligation, the mechanism by which the same receptor can induce alternative cellular responses is not completely understood. A model for explaining both positive (cell proliferation and cytokine production) and negative (anergy induction) signaling of T lymphocytes is described herein. This model relies on the autophosphorylative properties of the tyrosine kinases associated with the T cell receptor. One of its basic assumptions is that the kinase activity of these receptor-associated enzymes remains above background level after ligand removal and is responsible for cellular unresponsiveness. Using a simple Boolean formalism, we show how the timing of the binding and intracellular signal-transduction events can affect the properties of receptor signaling and determine the type of cellular response. The present approach integrates into a common framework a large body of experimental observations and allows specification of conditions leading to cellular activation or to anergy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interaction of the αβ T cell receptor (TCR) with major histocompatibility (MHC) molecules occupied with any of a large collection of peptides derived from self proteins is a critical step in driving T cell “positive” selection in the thymus. Interaction with this same pool of self-peptide/MHC ligands deletes T cells with potential self-reactivity. To examine how T cells survive both of these processes to form a self-tolerant mature repertoire, mice were constructed whose entire class II MHC IEk specific repertoire was positively selected on a single peptide covalently attached to the IEk molecule. In these mice T cells were identified that could respond to a variant of the positively selecting peptide bound to IEk. The affinities of the TCRs from these T cells for the positively selecting ligand were extremely low and at least 10-fold less than those for the activating ligand. These results support the theory that positive selection is driven by TCR affinities lower than those involved in T cell deletion or activation and that, if present at high concentration, even very low affinity ligands can positively select.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developmental commitment involves activation of lineage-specific genes, stabilization of a lineage-specific gene expression program, and permanent inhibition of inappropriate characteristics. To determine how these processes are coordinated in early T cell development, the expression of T and B lineage-specific genes was assessed in staged subsets of immature thymocytes. T lineage characteristics are acquired sequentially, with germ-line T cell antigen receptortranscripts detected very early, followed by CD3ɛ and terminal deoxynucleotidyl transferase, then pTα, and finally RAG1. Only RAG1 expression coincides with commitment. Thus, much T lineage gene expression precedes commitment and does not depend on it. Early in the course of commitment to the T lineage, thymocytes lose the ability to develop into B cells. To understand how this occurs, we also examined expression of well defined B lineage-specific genes. Although λ5 and Ig-α are not expressed, the μ0 and Iμ transcripts from the unrearranged IgH locus are expressed early, in distinct patterns, then repressed just before RAG1 expression. By contrast, RNA encoding the B cell receptor component Ig-β was found to be transcribed in all immature thymocyte subpopulations and throughout most thymocyte differentiation. Ig-β expression is down-regulated only during positive selection of CD4+CD8– cells. Thus several key participants in the B cell developmental program are expressed in non-B lineage-committed cells, and one is maintained even through commitment to an alternative lineage, and repressed only after extensive T lineage differentiation. The results show that transcriptional activation of “lymphocyte-specific” genes can occur in uncommitted precursors, and that T lineage commitment is a composite of distinct positive and negative regulatory events.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By using antisense RNA, Lck-deficient transfectants of a T helper 2 (Th2) clone have been derived and shown to have a qualitative defect in the T cell receptor signaling pathway. A striking feature observed only in Lck-deficient T cells was the presence of a constitutively tyrosine-phosphorylated 32-kDa protein. In the present study, we provide evidence that this aberrantly hyperphosphorylated protein is p34cdc2 (cdc2) a key regulator of cell-cycle progression. Lck-deficient transfectants expressed high levels of cdc2 protein and its regulatory units, cyclins A and B. The majority of cdc2, however, was tyrosine-phosphorylated and therefore enzymatically inactive. The transfectants were significantly larger than the parental cells and contained 4N DNA. These results establish that a deficiency in Lck leads to a cell-cycle arrest in G2. Moreover, transfected cells were hypersusceptible to apoptosis when activated through the T cell receptor. Importantly, however, this hypersusceptibility was largely reversed in the presence of T cell growth factors. These findings provide evidence that, in mature T lymphocytes, cell-cycle progression through the G2–M check point requires expression of the Src-family protein tyrosine kinase, Lck. This requirement is Lck-specific; it is observed under conditions in which the closely related Fyn kinase is expressed normally, evincing against a redundancy of function between these two kinases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Down-regulation of the initial burst of viremia during primary HIV infection is thought to be mediated predominantly by HIV-specific cytotoxic T lymphocytes, and the appearance of this response is associated with major perturbations of the T cell receptor repertoire. Changes in the T cell receptor repertoire of virus-specific cytotoxic T lymphocytes were analyzed in patients with primary infection to understand the failure of the cellular immune response to control viral spread and replication. This analysis demonstrated that a significant number of HIV-specific T cell clones involved in the primary immune response rapidly disappeared. The disappearance was not the result of mutations in the virus epitopes recognized by these clones. Evidence is provided that phenomena such as high-dose tolerance or clonal exhaustion might be involved in the disappearance of these monoclonally expanded HIV-specific cytotoxic T cell clones. These findings should provide insights into how HIV, and possibly other viruses, elude the host immune response during primary infection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For a large number of T cell-mediated immunopathologies, the disease-related antigens are not yet identified. Identification of T cell epitopes is of crucial importance for the development of immune-intervention strategies. We show that CD4+ T cell epitopes can be defined by using a new system for synthesis and screening of synthetic peptide libraries. These libraries are designed to bind to the HLA class II restriction molecule of the CD4+ T cell clone of interest. The screening is based on three selection rounds using partial release of 14-mer peptides from synthesis beads and subsequent sequencing of the remaining peptide attached to the bead. With this approach, two peptides were identified that stimulate the β cell-reactive CD4+ T cell clone 1c10, which was isolated from a newly diagnosed insulin-dependent diabetes mellitus patient. After performing amino acid-substitution studies and protein database searches, a Haemophilus influenzae TonB-derived peptide was identified that stimulates clone 1c10. The relevance of this finding for the pathogenesis of insulin-dependent diabetes mellitus is currently under investigation. We conclude that this system is capable of determining epitopes for (autoreactive) CD4+ T cell clones with previously unknown peptide specificity. This offers the possibility to define (auto)antigens by searching protein databases and/or to induce tolerance by using the peptide sequences identified. In addition the peptides might be used as leads to develop T cell receptor antagonists or anergy-inducing compounds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Tec family of tyrosine kinases are involved in signals emanating from cytokine receptors, antigen receptors, and other lymphoid cell surface receptors. One family member, ITK (inducible T cell kinase), is involved in T cell activation and can be activated by the T cell receptor and the CD28 cell surface receptor. This stimulation of tyrosine phosphorylation and activation of ITK can be mimicked by the Src family kinase Lck. We have explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that coexpression of ITK and Src results in increased membrane association, tyrosine phosphorylation and activation of ITK, which could be blocked by inhibitors of the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase) as well as overexpression of the p85 subunit of PI 3-kinase. Removal of the Pleckstrin homology domain (PH) of ITK resulted in a kinase that could no longer be induced to localize to the membrane or be activated by Src. The PH of ITK was also able to bind inositol phosphates phosphorylated at the D3 position. Membrane targeting of ITK without the PH recovered its ability to be activated by Src. These results suggest that ITK can be activated by a combination of Src and PI 3-kinase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increasing evidence suggests that HIV-1-specific cytotoxic T lymphocytes (CTLs) are a key host immune response to HIV-1 infection. Generation of CTL responses for prevention or therapy of HIV-1 infection has several intrinsic technical barriers such as antigen expression and presentation, the varying HLA restrictions between different individuals, and the potential for viral escape by sequence variation or surface molecule alteration on infected cells. A strategy to circumvent these limitations is the construction of a chimeric T cell receptor containing human CD4 or HIV-1-specific Ig sequences linked to the signaling domain of the T cell receptor ζ chain (universal T cell receptor). CD8+ CTLs transduced with this universal receptor can then bind and lyse infected cells that express surface HIV-1 gp120. We evaluated the ability of universal-receptor-bearing CD8+ cells from a seronegative donor to lyse acutely infected cells and inhibit HIV-1 replication in vitro. The kinetics of lysis and efficiency of inhibition were comparable to that of naturally occurring HIV-1-specific CTL clones isolated from infected individuals. Further study will be required to determine the utility of these cells as a therapeutic strategy in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The small subunit of calpain, a calcium-dependent cysteine protease, was found to interact with the cytoplasmic domain of the common cytokine receptor γ chain (γc) in a yeast two-hybrid interaction trap assay. This interaction was functional as demonstrated by the ability of calpain to cleave in vitro-translated wild-type γc, but not γc containing a mutation in the PEST (proline, glutamate, serine, and threonine) sequence in its cytoplasmic domain, as well as by the ability of endogenous calpain to mediate cleavage of γc in a calcium-dependent fashion. In T cell receptor-stimulated murine thymocytes, calpain inhibitors decreased cleavage of γc. Moreover, in single positive CD4+ thymocytes, not only did a calpain inhibitor augment CD3-induced proliferation, but antibodies to γc blocked this effect. Finally, treatment of cells with ionomycin could inhibit interleukin 2-induced STAT protein activation, but this inhibition could be reversed by calpain inhibitors. Together, these data suggest that calpain-mediated cleavage of γc represents a mechanism by which γc-dependent signaling can be controlled.