49 resultados para Serotonin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensitization of primary afferent neurons underlies much of the pain and tenderness associated with tissue injury and inflammation. The increase in excitability is caused by chemical agents released at the site of injury. Because recent studies suggest that an increase in voltage-gated Na+ currents may underlie increases in neuronal excitability associated with injury, we have tested the hypothesis that a tetrodotoxin-resistant voltage-gated Na+ current (TTX-R INa), selectively expressed in a subpopulation of sensory neurons with properties of nociceptors, is a target for hyperalgesic agents. Our results indicate that three agents that produce tenderness or hyperalgesia in vivo, prostaglandin E2, adenosine, and serotonin, modulate TTX-R INa. These agents increase the magnitude of the current, shift its conductance-voltage relationship in a hyperpolarized direction, and increase its rate of activation and inactivation. In contrast, thromboxane B2, a cyclooxygenase product that does not produce hyperalgesia, did not affect TTX-R INa. These results suggest that modulation of TTX-R INa is a mechanism for sensitization of mammalian nociceptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different autoantigens are thought to be involved in the pathogenesis of insulin-dependent diabetes mellitus, and they may account for the variation in the clinical presentation of the disease. Sera from patients with autoimmune polyendocrine syndrome type I contain autoantibodies against the beta-cell proteins glutamate decarboxylase and an unrelated 51-kDa antigen. By screening of an expression library derived from rat insulinoma cells, we have identified the 51-kDa protein as aromatic-L-amino-acid decarboxylase (EC 4.1.1.28). In addition to the previously published full-length cDNA, forms coding for a truncated and an alternatively spliced version were identified. Aromatic L-amino acid decarboxylase catalyzes the decarboxylation of L-5-hydroxytryptophan to serotonin and that of L-3,4-dihydroxyphenylalanine to dopamine. Interestingly, pyridoxal phosphate is the cofactor of both aromatic L-amino acid decarboxylase and glutamate decarboxylase. The biological significance of the neurotransmitters produced by the two enzymes in the beta cells remains largely unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms by which stress and anti-depressants exert opposite effects on the course of clinical depression are not known. However, potential candidates might include neurotrophic factors that regulate the development, plasticity, and survival of neurons. To explore this hypothesis, we examined the effects of stress and antidepressants on neurotrophin expression in the locus coeruleus (LC), which modulates many of the behavioral and physiological responses to stress and has been implicated in mood disorders. Using in situ hybridization, we demonstrate that neurotrophin 3 (NT-3) is expressed in noradrenergic neurons of the LC. Recurrent, but not acute, immobilization stress increased NT-3 mRNA levels in the LC. In contrast, chronic treatment with antidepressants decreased NT-3 mRNA levels. The effect occurred in response to antidepressants that blocked norepinephrine uptake, whereas serotonin-specific reuptake inhibitors did not alter NT-3 levels. Electroconvulsive seizures also decreased NT-3 expression in the LC as well as the hippocampus. Ntrk3 (neurotrophic tyrosine kinase receptor type 3; formerly TrkC), the receptor for NT-3, is expressed in the LC, but its mRNA levels did not change with stress or antidepressant treatments. Because, NT-3 is known to be trophic for LC neurons, our results raise the possibility that some of the effects of stress and antidepressants on LC function and plasticity could be mediated through NT-3. Moreover, the coexpression of NT-3 and its receptor in the LC suggests the potential for autocrine mechanisms of action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We sought to examine mechanisms responsible for increased vasoconstriction that occurs during development of nitroglycerin tolerance. Rabbits were treated for 3 days with nitroglycerin patches (0.4 mg/hr), and their aortic segments were studied in organ chambers. This treatment resulted in attenuated in vitro relaxations to nitroglycerin and increased contractile sensitivity to angiotensin II, serotonin, phenylephrine, KCl, and a direct activator of protein kinase C, the phorbol ester phorbol 12,13-dibutyrate. The protein kinase C antagonists calphostin C (100 nM) and staurosporine (10 nM) corrected the hypersensitivity to constrictors in tolerant vessels, yet had minimal effects on constrictions in control vessels. Paradoxically, constrictions caused by endothelin 1 were decreased in nitrate-tolerant vessels. Immunocytochemical analysis revealed intense endothelin 1-like and big endothelin 1-like immunoreactivity in the media of nitroglycerin-tolerant but not of control aortas. The enhanced vasoconstriction to angiotensin II, serotonin, KCl, and phenylephrine could be mimicked in normal vessels by addition of subthreshold concentrations of endothelin 1, and this effect was prevented by calphostin C. We propose that increased autocrine production of endothelin 1 in nitrate tolerance sensitizes vascular smooth muscle to a variety of vasoconstrictors through a protein kinase C-mediated mechanism.