159 resultados para Histocompatibility antigens class II


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer (NK) cells are inhibited from killing cellular targets by major histocompatibility complex (MHC) class I molecules. In the mouse, this can be mediated by the Ly-49A NK cell receptor that specifically binds the H-2Dd MHC class I molecule, then inhibits NK cell activity. Previous experiments have indicated that Ly-49A recognizes the alpha 1/alpha 2 domains of MHC class I and that no specific MHC-bound peptide appeared to be involved. We demonstrate here that alanine-substituted peptides, having only the minimal anchor motifs, stabilized H-2Dd expression and provided resistance to H-2Dd-transfected, transporter associated with processing (TAP)-deficient cells from lysis by Ly-49A+ NK cells. Peptide-induced resistance was blocked only by an mAb that binds a conformational determinant on H-2Dd. Moreover, stabilization of "empty" H-2Dd heavy chains by exogenous beta 2-microglobulin did not confer resistance. In contrast to data for MHC class I-restricted T cells that are specific for peptides displayed MHC molecules, these data indicate that NK cells are specific for a peptide-induced conformational determinant, independent of specific peptide. This fundamental distinction between NK cells and T cells further implies that NK cells are sensitive only to global changes in MHC class I conformation or expression, rather than to specific pathogen-encoded peptides. This is consistent with the "missing self" hypothesis, which postulates that NK cells survey tissues for normal expression of MHC class I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteasomes are involved in the proteolytic generation of major histocompatibility complex (MHC) class I epitopes but their exact role has not been elucidated. We used highly purified murine 20S proteasomes for digestion of synthetic 22-mer and 41/44-mer ovalbumin partial sequences encompassing either an immunodominant or a marginally immunogenic epitope. At various times, digests were analyzed by pool sequencing and by semiquantitative electrospray ionization mass spectrometry. Most dual cleavage fragments derived from 22-mer peptides were 7-10 amino acids long, with octa- and nonamers predominating. Digestion of 41/44-mer peptides initially revealed major cleavage sites spaced by two size ranges, 8 or 9 amino acids and 14 or 15 amino acids, followed by further degradation of the latter as well as of larger single cleavage fragments. The final size distribution was slightly broader than that of fragments derived from 22-mer peptides. The majority of peptide bonds were cleaved, albeit with vastly different efficiencies. This resulted in multiple overlapping proteolytic fragments including a limited number of abundant peptides. The immunodominant epitope was generated abundantly whereas only small amounts of the marginally immunogenic epitope were detected. The frequency distributions of amino acids flanking proteasomal cleavage sites are correlated to that reported for corresponding positions of MHC class I binding peptides. The results suggest that proteasomal degradation products may include fragments with structural properties similar to MHC class I binding peptides. Proteasomes may thus be involved in the final stages of proteolytic epitope generation, often without the need for downstream proteolytic events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mixed-class alcohol dehydrogenase has been characterized from avian liver. Its functional properties resemble the classical class I type enzyme in livers of humans and animals by exhibiting low Km and kcat values with alcohols (Km = 0.7 mM with ethanol) and low Ki values with 4-methylpyrazole (4 microM). These values are markedly different from corresponding parameters of class II and III enzymes. In contrast, the primary structure of this avian liver alcohol dehydrogenase reveals an overall relationship closer to class II and to some extent class III (69 and 65% residue identities, respectively) than to class I or the other classes of the human alcohol dehydrogenases (52-61%), the presence of an insertion (four positions in a segment close to position 120) as in class II but in no other class of the human enzymes, and the presence of several active site residues considered typical of the class II enzyme. Hence, the avian enzyme has mixed-class properties, being functionally similar to class I, yet structurally similar to class II, with which it also clusters in phylogenetic trees of characterized vertebrate alcohol dehydrogenases. Comparisons reveal that the class II enzyme is approximately 25% more variable than the "variable" class I enzyme, which itself is more variable than the "constant" class III enzyme. The overall extreme, and the unusual chromatographic behavior may explain why the class II enzyme has previously not been found outside mammals. The properties define a consistent pattern with apparently repeated generation of novel enzyme activities after separate gene duplications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular mimicry, normally defined by the level of primary-sequence similarities between self and foreign antigens, has been considered a key element in the pathogenesis of autoimmunity. Here we describe an example of molecular mimicry between two overlapping peptides within a single self-antigen, both of which are recognized by the same human self-reactive T-cell clone. Two intervening peptides did not stimulate the T-cell clone, even though they share nine amino acids with the stimulatory peptides. Molecular modeling of major histocompatibility complex class II-peptide complexes suggests that both of the recognized peptides generate similar antigenic surfaces, although these are composed of different sets of amino acids. The molecular modeling of a peptide shifted one residue from the stimulatory peptide, which was recognized in the context of the same HLA molecule by another T-cell clone, generated a completely different antigenic surface. Functional studies using truncated peptides confirmed that the anchor residues of the two "mimicking" epitopes in the HLA groove differ. Our results show, for two natural epitopes, how molecular mimicry can occur and suggest that studies of potential antigenic surfaces, rather than sequence similarity, are necessary for analyzing suspected peptide mimicry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tolerance induction by thymic epithelium induces a state of so-called "split tolerance," characterized in vivo by tolerance and in vitro by reactivity to a given thymically expressed antigen. Using a model major histocompatibility complex class I antigen, H-2Kb (Kb), three mechanisms of thymic epithelium-induced tolerance were tested: induction of tolerance of tissue-specific antigens exclusively, selective inactivation of T helper cell-independent cytotoxic T lymphocytes, and deletion of high-avidity T cells. To this end, thymic anlagen from Kb-transgenic embryonic day 10 mouse embryos, taken before colonization by cells of hemopoietic origin, were grafted to nude mice. Tolerance by thymic epithelium was not tissue-specific, since Kb-bearing skin and spleen grafts were maintained indefinitely. Only strong priming in vivo could partially overcome the tolerant state and induce rejection of some skin grafts overexpressing transgenic Kb. Furthermore, the hypothesis that thymic epithelium selectively inactivates those T cells that reject skin grafts in a T helper-independent fashion could not be supported. Thus, when T-cell help was provided by a second skin graft bearing an additional major histocompatibility complex class II disparity, tolerance to the Kb skin graft was not broken. Finally, direct evidence could be obtained for the avidity model of thymic epithelium-induced negative selection, using Kb-specific T-cell receptor (TCR) transgenic mice. Thymic epithelium-grafted TCR transgenic mice showed a selective deletion of those CD8+ T cells with the highest density of the clonotypic TCR. These cells presumably represent the T cells with the highest avidity for Kb. We conclude that split tolerance induced by thymic epithelium was mediated by the deletion of those CD8+ T lymphocytes that have the highest avidity for antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytokines interleukin (IL) 4 and IL-13 induce many of the same biological responses, including class switching to IgE and induction of major histocompatibility complex class II antigens and CD23 on human B cells. It has recently been shown that IL-4 induces the tyrosine phosphorylation of a 170-kDa protein, a substrate called 4PS, and of the Janus kinase (JAK) family members JAK1 and JAK3. Because IL-13 has many functional effects similar to those of IL-4, we compared the ability of IL-4 and IL-13 to activate these signaling molecules in the human multifactor-dependent cell line TF-1. In this report we demonstrate that both IL-4 and IL-13 induced the tyrosine phosphorylation of 4PS and JAK1. Interestingly, although IL-4 induced the tyrosine phosphorylation of JAK3, we did not detect JAK3 phosphorylation in response to IL-13. These data suggest that IL-4 and IL-13 signal in similar ways via the activation of JAK1 and 4PS. However, our data further indicate that there are significant differences because IL-13 does not activate JAK3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have characterized the transmembrane signaling events initiated after T-cell antigen receptor recognition of major histocompatibility complex (MHC)-bound peptides. Yet, little is known about signal transduction from a set of MHC class I recognizing receptors on natural killer (NK) cells whose ligation dramatically inhibits NK cell-mediated killing. In this study we evaluated the influence of MHC recognition on the proximal signaling events in NK cells binding tumor targets. We utilized two experimental models where NK cell-mediated cytotoxicity was fully inhibited by the recognition of specific MHC class I molecules. NK cell binding to either class I-deficient or class I-transfected target cells initiated rapid protein tyrosine kinase activation. In contrast, whereas NK cell binding to class I-deficient targets led to inositol phosphate release and increased intracellular free calcium ([Ca2+]i), NK recognition of class I-bearing targets did not induce the activation of these phospholipase C-dependent signaling events. The recognition of class I by NK cells clearly had a negative regulatory effect since blocking this interaction using anti-class I F(ab')2 fragments increased inositol 1,4,5-trisphosphate release and [Ca2+]i and increased the lysis of the targets. These results suggest that one of the mechanisms by which NK cell recognition of specific MHC class I molecules can block the development of cell-mediated cytotoxicity is by inhibiting specific critical signaling events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigenic peptide loading of major histocompatibility complex class II molecules is enhanced by lysosomal pH and catalyzed by the HLA-DM molecule. The physical mechanism behind the catalytic activity of DM was investigated by using time-resolved fluorescence anisotropy (TRFA) and fluorescence binding studies with the dye 8-anilino-1-naphthalenesulfonic acid (ANS). We demonstrate that the conformations of both HLA-DM and HLA-DR3, irrespective of the composition of bound peptide, are pH sensitive. Both complexes reversibly expose more nonpolar regions upon protonation. Interaction of DM with DR shields these hydrophobic domains from the aqueous environment, leading to stabilization of the DM and DR conformations. At lysosomal pH, the uncovering of additional hydrophobic patches leads to a more extensive DM–DR association. We propose that DM catalyzes class II peptide loading by stabilizing the low-pH conformation of DR, favoring peptide exchange. The DM–DR association involves a larger hydrophobic surface area with DR/class II-associated invariant chain peptides (CLIP) than with stable DR/peptide complexes, explaining the preferred association of DM with the former. The data support a release mechanism of DM from the DM–DR complex through reduction of the interactive surface, upon binding of class II molecules with antigenic peptide or upon neutralization of the DM–DR complex at the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β2-Microglobulin-deficient (β2m−) mice generate a CD4+ major histocompatibility complex class II-restricted cytotoxic T-lymphocyte (CTL) response following infection with lymphocytic choriomeningitis (LCM) virus (LCMV). We have determined the cytotoxic mechanism used by these CD4+ CTLs and have examined the role of this cytotoxic activity in pathogenesis of LCM disease in β2m− mice. Lysis of LCMV-infected target cells by CTLs from β2m− mice is inhibited by addition of soluble Fas-Ig fusion proteins or by pretreatment of the CTLs with the protein synthesis inhibitor emetine. In addition, LCMV-infected cell lines that are resistant to anti-Fas-induced apoptosis are refractory to lysis by these virus-specific CD4+ CTLs. These data indicate that LCMV-specific CD4+ CTLs from β2m− mice use a Fas-dependent lytic mechanism. Intracranial (i.c.) infection of β2m− mice with LCMV results in loss of body weight. Fas-deficient β2m−.lpr mice develop a similar wasting disease following i.c. infection. This suggests that Fas-dependent cytotoxicity is not required for LCMV-induced weight loss. A potential mediator of this chronic wasting disease is tumor necrosis factor (TNF)-α, which is produced by LCMV-specific CD4+ CTLs. In contrast to LCMV-induced weight loss, lethal LCM disease in β2m− mice is dependent on Fas-mediated cytotoxicity. Transfer of immune splenocytes from LCMV-infected β2m− mice into irradiated infected β2m− mice results in death of recipient animals. In contrast, transfer of these splenocytes into irradiated infected β2m−.lpr mice does not cause death. Thus a role for CD4+ T-cell-mediated cytotoxicity in virus-induced immunopathology has now been demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cbl is the product of the protooncogene c-cbl and is involved in T cell antigen receptor (TCR)-mediated signaling. To understand the role of Cbl for immune system development and function, we generated a Cbl-deficient mouse strain. In Cbl-deficient mice, positive selection of the thymocytes expressing major histocompatibility complex class II-restricted transgenic TCR was significantly enhanced. Two factors may have contributed to the altered thymic selection. First, Cbl deficiency markedly up-regulated the activity of ZAP-70 and mitogen-activated protein kinases. The mitogen-activated protein kinase pathway was shown previously to be involved in thymic positive selection. Second, Cbl-deficient thymocytes expressed CD3 and CD4 molecules at higher levels, which consequently may increase the avidity of TCR/major histocompatibility complex/coreceptor interaction. Thus, Cbl plays a novel role in modulating TCR-mediated multiple signaling pathways and fine-tunes the signaling threshold for thymic selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Murine mAbs reactive with the surface of Mycobacterium tuberculosis were assayed for their ability to affect the course of infection in mice challenged with virulent organisms. An IgG3 mAb (9d8) specific for arabinomannan and reactive with purified antigen from a clinical isolate of M. tuberculosis conferred partial protection on mice after respiratory challenge (30–60% survival >75 days; P ≤ 0.05). Control mice pretreated with an irrelevant mAb of the same isotype succumbed to tuberculosis within 30 days. Mice with gene disruptions in interferon γ and major histocompatibility complex Class II also were partially protected from challenge. The protective mAb was neither bactericidal nor inhibitory of infection or bacterial replication. Nevertheless, it profoundly altered the nature of the granulomas in the infected lungs. Mice treated with mAb 9d8 and challenged with M. tuberculosis localized the pathogen within granuloma centers, suggesting that the mAb conferred protection by enhancing a cellular immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CD4 receptor contributes to T-cell activation by coligating major histocompatibility complex class II on antigen presenting cells with the T-cell receptor (TCR)/CD3 complex, and triggering a cascade of signaling events including tyrosine phosphorylation of intracellular proteins. Paradoxically, CD3 cross-linking prior to TCR stimulation results in apoptotic cell death, as does injection of anti-CD4 antibodies in vivo of CD4 ligation by HIV glycoprotein (gp) 120. In this report we investigate the mechanism by which CD4 cross-linking induces cell death. We have found that CD4 cross-linking results in a small but rapid increase in levels of cell surface Fas, a member of the tumor necrosis factor receptor family implicated in apoptotic death and maintenance of immune homeostasis. Importantly, CD4 cross-linking triggered the ability of Fas to function as a death molecule. Subsequent to CD4 cross-linking, CD4+ splenocytes cultured overnight became sensitive to Fas-mediated death. Death was Fas-dependent, as demonstrated by cell survival in the absence of plate-bound anti-Fas antibody, and by the lack of CD4-induced death in cells from Fas-defective lymphoproliferative (lpr) mice. We demonstrate here that CD4 regulates the ability of Fas to induce cell death in Cd4+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonclassical major histocompatibility complex class II molecule HLA-DM (DM) has recently been shown to play a central role in the class II-associated antigen presentation pathway: DM releases invariant chain-derived CLIP peptides (class II-associated invariant chain protein peptide) from HLA-DR (DR) molecules and thereby facilitates loading with antigenic peptides. Some observations have led to the suggestion that DM acts in a catalytic manner, but so far direct proof is missing. Here, we investigated in vitro the kinetics of exchange of endogenously bound CLIP for various peptides on DR1 and DR2a molecules: we found that in the presence of DM the peptide loading process follows Michaelis-Menten kinetics with turnover numbers of 3-12 DR molecules per minute per DM molecule, and with KM values of 500-1000 nM. In addition, surface plasmon resonance measurements showed that DM interacts efficiently with DR-CLIP complexes but only weakly with DR-peptide complexes isolated from DM-positive cells. Taken together, our data provide evidence that DM functions as an enzyme-like catalyst of peptide exchange and favors the generation of long-lived DR-peptide complexes that are no longer substrates for DM.