58 resultados para Bacillus-subtilis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substitutions or deletions of domain II loop residues of Bacillus thuringiensis δ-endotoxin CryIAb were constructed using site-directed mutagenesis techniques to investigate their functional roles in receptor binding and toxicity toward gypsy moth (Lymantria dispar). Substitution of loop 2 residue N372 with Ala or Gly (N372A, N372G) increased the toxicity against gypsy moth larvae 8-fold and enhanced binding affinity to gypsy moth midgut brush border membrane vesicles (BBMV) ≈4-fold. Deletion of N372 (D3), however, substantially reduced toxicity (>21 times) as well as binding affinity, suggesting that residue N372 is involved in receptor binding. Interestingly, a triple mutant, DF-1 (N372A, A282G and L283S), has a 36-fold increase in toxicity to gypsy moth neonates compared with wild-type toxin. The enhanced activity of DF-1 was correlated with higher binding affinity (18-fold) and binding site concentrations. Dissociation binding assays suggested that the off-rate of the BBMV-bound mutant toxins was similar to that of the wild type. However, DF-1 toxin bound 4 times more than the wild-type and N372A toxins, and it was directly correlated with binding affinity and potency. Protein blots of gypsy moth BBMV probed with labeled N372A, DF-1, and CryIAb toxins recognized a common 210-kDa protein, indicating that the increased activity of the mutants was not caused by binding to additional receptor(s). The improved binding affinity of N372A and DF-1 suggest that a shorter side chain at these loops may fit the toxin more efficiently to the binding pockets. These results offer an excellent model system for engineering δ-endotoxins with higher potency and wider spectra of target pests by improving receptor binding interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation–PCR method. This simple and economical method to construct large synthetic genes can be used when routine resynthesis of genes is required. Chemically phosphorylated adjacent oligonucleotides of the gene to be synthesized are assembled and ligated on a single-stranded, partially homologous template derived from a wild-type gene (cryIC in our case) by a thermostable Pfu DNA ligase using repeated cycles of melting, annealing, and ligation. The resulting synthetic DNA strands are selectively amplified by PCR with short specific flanking primers that are complementary only to the new synthetic DNA. Optimized expression of the synthetic cryIC gene in alfalfa and tobacco results in the production of 0.01–0.2% of total soluble proteins as CryIC toxin and provides protection against the Egyptian cotton leafworm (Spodoptera littoralis) and the beet armyworm (Spodoptera exigua). To facilitate selection and breeding of Spodoptera-resistant plants, the cryIC gene was linked to a pat gene, conferring resistance to the herbicide BASTA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5,000–10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategies for delaying pest resistance to genetically modified crops that produce Bacillus thuringiensis (Bt) toxins are based primarily on theoretical models. One key assumption of such models is that genes conferring resistance are rare. Previous estimates for lepidopteran pests targeted by Bt crops seem to meet this assumption. We report here that the estimated frequency of a recessive allele conferring resistance to Bt toxin Cry1Ac was 0.16 (95% confidence interval = 0.05–0.26) in strains of pink bollworm (Pectinophora gossypiella) derived from 10 Arizona cotton fields during 1997. Unexpectedly, the estimated resistance allele frequency did not increase from 1997 to 1999 and Bt cotton remained extremely effective against pink bollworm. These results demonstrate that the assumptions and predictions of resistance management models must be reexamined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some foreign genes introduced into plants are poorly expressed, even when transcription is controlled by a strong promoter. Perhaps the best examples of this problem are the cry genes of Bacillus thuringiensis (B.t.), which encode the insecticidal proteins commonly referred to as B.t. toxins. As a step toward overcoming such problems most effectively, we sought to elucidate the mechanisms limiting the expression of a typical B.t.-toxin gene, cryIA(c), which accumulates very little mRNA in tobacco (Nicotiana tabacum) cells. Most cell lines transformed with the cryIA(c) B.t.-toxin gene accumulate short, polyadenylated transcripts. The abundance of these transcripts can be increased by treating the cells with cycloheximide, a translation inhibitor that can stabilize many unstable transcripts. Using a series of hybridizations, reverse-transcriptase polymerase chain reactions, and RNase-H-digestion experiments, poly(A+) addition sites were identified in the B.t.-toxin-coding region corresponding to the short transcripts. A fourth polyadenylation site was identified using a chimeric gene. These results demonstrate for the first time to our knowledge that premature polyadenylation can limit the expression of a foreign gene in plants. Moreover, this work emphasizes that further study of the fundamental principles governing polyadenylation in plants will have basic as well as applied significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that the expression of Bacillus thuringiensis (B.t.) toxin genes in higher plants is severely limited at the mRNA level, but the cause remains controversial. Elucidating whether mRNA accumulation is limited transcriptionally or posttranscriptionally could contribute to effective gene design as well as provide insights about endogenous plant gene-expression mechanisms. To resolve this controversy, we compared the expression of an A/U-rich wild-type cryIA(c) gene and a G/C-rich synthetic cryIA(c) B.t.-toxin gene under the control of identical 5′ and 3′ flanking sequences. Transcriptional activities of the genes were equal as determined by nuclear run-on transcription assays. In contrast, mRNA half-life measurements demonstrated directly that the wild-type transcript was markedly less stable than that encoded by the synthetic gene. Sequences that limit mRNA accumulation were located at more than one site within the coding region, and some appeared to be recognized in Arabidopsis but not in tobacco (Nicotiana tabacum). These results support previous observations that some A/U-rich sequences can contribute to mRNA instability in plants. Our studies further indicate that some of these sequences may be differentially recognized in tobacco cells and Arabidopsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel vegetative insecticidal gene, vip3A(a), whose gene product shows activity against lepidopteran insect larvae including black cutworm (Agrotis ipsilon), fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), tobacco budworm (Heliothis virescens), and corn earworm (Helicoverpa zea) has been isolated from Bacillus thuringiensis strain AB88. VIP3-insecticidal gene homologues have been detected in approximately 15% of Bacillus strains analyzed. The sequence of the vip3A(b) gene, a homologue of vip3A(a) isolated from B. thuringiensis strain AB424 is also reported. Vip3A(a) and (b) proteins confer upon Escherichia coli insecticidal activity against the lepidopteran insect larvae mentioned above. The sequence of the gene predicts a 791-amino acid (88.5 kDa) protein that contains no homology with known proteins. Vip3A insecticidal proteins are secreted without N-terminal processing. Unlike the B. thuringiensis 5-endotoxins, whose expression is restricted to sporulation, Vip3A insecticidal proteins are expressed in the vegetative stage of growth starting at mid-log phase as well as during sporulation. Vip3A represents a novel class of proteins insecticidal to lepidopteran insect larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis, was constructed by using a twin-pronged approach. Pulsed-field gel electrophoretic analysis enabled cleavage sites for Asn I and Dra I to be positioned on the 4.4-Mb circular chromosome, while, in parallel, clones from two cosmid libraries were ordered into contigs by means of fingerprinting and hybridization mapping. The resultant contig map was readily correlated with the physical map of the genome via the landmarked restriction sites. Over 165 genes and markers were localized on the integrated map, thus enabling comparisons with the leprosy bacillus, Mycobacterium leprae, to be undertaken. Mycobacterial genomes appear to have evolved as mosaic structures since extended segments with conserved gene order and organization are interspersed with different flanking regions. Repetitive sequences and insertion elements are highly abundant in M. tuberculosis, but the distribution of IS6110 is apparently nonrandom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vector-based vaccine that secretes the V3 principal neutralizing epitope of human immunodeficiency virus (HIV) could induce immune response to the epitope and prevent the viral infection. By using the Japanese consensus sequence of HIV-1, we successfully constructed chimeric protein secretion vectors by selecting an appropriate insertion site of a carrier protein and established the principal neutralizing determinant (PND)-peptide secretion system in BCG. The recombinant BCG (rBCG)-inoculated guinea pigs were initially screened by delayed-type hypersensitivity (DTH) skin reactions to the PND peptide, followed by passive transfer of the DTH by the systemic route. Further, immunization of mice with the rBCG resulted in induction of cytotoxic T lymphocytes. The guinea pig immune antisera showed elevated titers to the PND peptide and neutralized HIVMN, and administration of serum IgG from the vaccinated guinea pigs was effective in completely blocking the HIV infection in thymus/liver transplanted severe combined immunodeficiency (SCID)/hu or SCID/PBL mice. In addition, the immune serum IgG was shown to neutralize primary field isolates of HIV that match the neutralizing sequence motif by a peripheral blood mononuclear cell-based virus neutralization assay. The data support the idea that the antigen-secreting rBCG system can be used as a tool for development of HIV vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ureABC genes of Mycobacterium tuberculosis were cloned. By using a set of degenerate primers corresponding to a conserved region of the urease enzyme (EC 3.5.1.5), a fragment of the expected size was amplified by PCR and was used to screen a M. tuberculosis cosmid library. Three open reading frames with extensive similarity to the urease genes from other organisms were found. The locus was mapped on the chromosome, using an ordered M. tuberculosis cosmid library. A suicide vector containing a ureC gene disrupted by a kanamycin marker (aph) was used to construct a urease-negative Mycobacterium bovis bacillus Calmette-Guérin mutant by allelic exchange involving replacement of the ureC gene with the aph::ureC construct. To our knowledge, allelic exchange has not been reported previously in the slow-growing mycobacteria. Homologous recombination will be an invaluable genetic tool for deciphering the mechanisms of tuberculosis pathogenesis, a disease that causes 3 x 10(6) deaths a year worldwide.