259 resultados para protein tyrosine kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The product of the c-abl protooncogene is a nonreceptor tyrosine kinase found in both the cytoplasm and the nucleus. We report herein that cell adhesion regulates the kinase activity and subcellular localization of c-Abl. When fibroblastic cells are detached from the extracellular matrix, kinase activity of both cytoplasmic and nuclear c-Abl decreases, but there is no detectable alteration in the subcellular distribution. Upon adhesion to the extracellular matrix protein fibronectin, a transient recruitment of a subset of c-Abl to early focal contacts is observed coincident with the export of c-Abl from the nucleus to the cytoplasm. The cytoplasmic pool of c-Abl is reactivated within 5 min of adhesion, but the nuclear c-Abl is reactivated after 30 min, correlating closely with its return to the nucleus and suggesting that the active nuclear c-Abl originates in the cytoplasm. In quiescent cells where nuclear c-Abl activity is low, the cytoplasmic c-Abl is similarly regulated by adhesion but the nuclear c-Abl is not activated upon cell attachment. These results show that c-Abl activation requires cell adhesion and that this tyrosine kinase can transmit integrin signals to the nucleus where it may function to integrate adhesion and cell cycle signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selectins mediate rolling, the initial step of leukocyte adhesion to endothelial cells [Springer, T. A. (1995) Annu. Rev. Physiol. 57, 827–872 and Butcher, E. C. (1991) Cell 67, 1033–1036]. In this study we show that l-selectin triggering of Jurkat cells using different antibodies or glycomimetics resulted in activation of the src-tyrosine kinase p56lck; tyrosine phosphorylation of intracellular proteins, in particular mitogen-activating protein kinase and l-selectin; and association of Grb2/Sos with l-selectin. This association correlated with an activation of p21Ras, mitogen-activating protein kinase, Rac2, and a transient increase of O2− synthesis. Stimulation of the Ras pathway by l-selectin requires functional p56lck, since p56lck-deficient Jurkat cells (JCaM1.6) do not show tyrosine phosphorylation, association of l-selectin with Grb2/Sos, and activation of Ras upon l-selectin triggering. Transfection of JCaM1.6 cells with p56lck reconstitutes the observed signaling events. Genetic inhibition of Ras or Rac2 prevented Rac2 stimulation and O2− synthesis, respectively. The specificity and the physiological significance of the observed signaling cascade is indicated by stimulation of l-selectin-transfected P815, l-selectin-positive CEM or peripheral blood lymphocytes resulting in the same activation events as in Jurkat cells. Our results point to a signaling cascade from l-selectin via p56lck, Grb2/Sos, Ras, and Rac2 to O2− .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) is a critical transducer of signals originating from the B cell antigen receptor (BCR). Dosage, sequential phosphorylation, and protein interactions are interdependent mechanisms influencing Btk function. Phosphopeptide-specific mAbs recognizing two distinct phosphotyrosine modifications were used to quantify Btk activation by immunofluorescent techniques during B cell stimulation. In a population of cultured B cells stimulated by BCR crosslinking and analyzed by flow cytometry, transient phosphorylation of the regulatory Btk tyrosine residues (551Y and 223Y) was detected. The kinetics of phosphorylation of the residues were temporally distinct. Tyrosine 551, a transactivating substrate site for Src-family kinases, was maximally phosphorylated within ≈30 seconds of stimulation as monitored by flow cytometry. Tyrosine 223, an autophosphorylation site within the SH3 domain, was maximally phosphorylated at ≈5 minutes. Btk returned to a low tyrosine phosphorylation level within 30 minutes, despite persistent elevation of global tyrosine phosphorylation. Colocalization of activated Btk molecules with the crosslinked BCR signaling complex was observed to coincide with the period of maximal Btk tyrosine phosphorylation when stimulated B cells were analyzed with confocal microscopy. The results of these in situ temporal and spatial analyses imply that Btk signaling occurs in the region of the Ig receptor signaling complex, suggesting a similar location for downstream targets of its activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous reports indicate that the expression and/or activity of the protein-tyrosine phosphatase (PTP) LAR are increased in insulin-responsive tissues of obese, insulin-resistant humans and rodents, but it is not known whether these alterations contribute to the pathogenesis of insulin resistance. To address this question, we generated transgenic mice that overexpress human LAR, specifically in muscle, to levels comparable to those reported in insulin-resistant humans. In LAR-transgenic mice, fasting plasma insulin was increased 2.5-fold compared with wild-type controls, whereas fasting glucose was normal. Whole-body glucose disposal and glucose uptake into muscle in vivo were reduced by 39–50%. Insulin injection resulted in normal tyrosyl phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) in muscle of transgenic mice. However, phosphorylation of IRS-2 was reduced by 62%, PI3′ kinase activity associated with phosphotyrosine, IRS-1, or IRS-2 was reduced by 34–57%, and association of p85α with both IRS proteins was reduced by 39–52%. Thus, overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation of specific regulatory phosphotyrosines on IRS proteins. Our data suggest that increased expression and/or activity of LAR or related PTPs in insulin target tissues of obese humans may contribute to the pathogenesis of insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

JAK2, a member of the Janus kinase superfamily was found to interact functionally with Raf-1, a central component of the ras/mitogen-activated protein kinase signal transduction pathway. Interferon-gamma and several other cytokines that are known to activate JAK2 kinase were also found to stimulate Raf-1 kinase activity toward MEK-1 in mammalian cells. In the baculovirus coexpression system, Raf-1 was activated by JAK2 in the presence of p21ras. Under these conditions, a ternary complex of p21ras, JAK2, and Raf-1 was observed. In contrast, in the absence of p21ras, coexpression of JAK2 and Raf-1 resulted in an overall decrease in the Raf-1 kinase activity. In addition, JAK2 phosphorylated Raf-1 at sites different from those phosphorylated by pp60v-src. In mammalian cells treated with either erythropoietin or interferon-gamma, a small fraction of Raf-1 coimmunoprecipitated with JAK2 in lysates of cells in which JAK2 was activated as judged by its state of tyrosine phosphorylation. Taken together, these data suggest that JAK2 and p21ras cooperate to activate Raf-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations of the Bruton's tyrosine kinase (btk) gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immune deficiency (Xid) in mice. To establish the BTK role in B-cell activation we examined the responses of wild-type and Xid B cells to stimulation through surface IgM and CD40, the transducers of thymus independent-type 2 and thymus-dependent activation, respectively. Wild-type BTK was necessary for proliferation induced by soluble anti-IgM (a prototype for thymus independent-type 2 antigen), but not for responses to soluble CD40 ligand (CD40L, the B-cell activating ligand expressed on T-helper cells). In the absence of wild-type BTK, B cells underwent apoptotic death after stimulation with anti-IgM. In the presence of wild-type but not mutated BTK, anti-IgM stimulation reduced apoptotic cell death. In contrast, CD40L increased viability of both wild-type and Xid B cells. Importantly, viability after stimulation correlated with the induced expression of bcl-XL. In fresh ex vivo small resting B cells from wild-type mice there was only barely detectable bcl-XL protein, but there was more in the larger, low-density ("activated") splenic B cells and peritoneal B cells. In vitro Bcl-XL induction following ligation of sIgM-required BTK, was cyclosporin A (CsA)-sensitive and dependent on extracellular Ca2+. CD40-mediated induction of bcl-x required neither wild-type BTK nor extracellular Ca2+ and was insensitive to CsA. These results indicate that BTK lies upstream of bcl-XL in the sIgM but not the CD40 activation pathway. bcl-XL is the first induced protein to be placed downstream of BTK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyrosine kinases play central roles in the growth and differentiation of normal and tumor cells. In this study, we have analyzed the general tyrosine kinase expression profile of a prostate carcinoma (PCA) xenograft, CWR22. We describe here an improved reverse transcriptase-PCR approach that permits identification of nearly 40 different kinases in a single screening; several of these kinases are newly cloned kinases and some are novel. According to this, there are 11 receptor kinases, 9 nonreceptor kinases, and at least 7 dual kinases expressed in the xenograft tissue. The receptor kinases include erbB2, erbB3, Ret, platelet-derived growth factor receptor, sky, nyk, eph, htk, sek (eph), ddr, and tkt. The nonreceptor kinases are lck, yes, abl, arg, JakI, tyk2, and etk/bmx. Most of the dual kinases are in the mitogen-activating protein (MAP) kinase-kinase (MKK) family, which includes MKK3, MKK4, MEK5, and a novel one. As a complementary approach, we also analyzed by specific reverse transcriptase-PCR primers the expression profile of erbB/epidermal growth factor receptor family receptors in a variety of PCA specimens, cell lines, and benign prostatic hyperplasia. We found that erbB1, -2, and -3 are often coexpressed in prostate tissues, but not in erbB4. The information established here should provide a base line to study the possible growth and oncogenic signals of PCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein-tyrosine phosphatase epsilon (PTP epsilon) is a transmembranal, receptor-type protein that possesses two phosphatase catalytic domains characteristic of transmembranal phosphatases. Here we demonstrate the existence of a nontransmembranal isoform of PTP epsilon, PTP epsilon-cytoplasmic. PTP epsilon-cytoplasmic and the transmembranal isoform of PTP epsilon have separate, nonoverlapping expression patterns. Further, the data clearly indicate that control of which of the two isoforms is to be expressed is initiated at the transcriptional level, suggesting that they have distinct physiological roles. PTP epsilon-cytoplasmic mRNA is the product of a delayed early response gene in NIH 3T3 fibroblasts, and its transcription is regulated through a pathway that requires protein kinase C. The human homologue of PTP epsilon-cytoplasmic has also been cloned and is strongly up-regulated in the early stages of phorbol 12-tetradecanoate 13-acetate-induced differentiation of HL-60 cells. Sequence analysis indicates and cellular fractionation experiments confirm that this isoform is a cytoplasmic molecule. PTP epsilon-cytoplasmic is therefore the initial example to our knowledge of a nontransmembranal protein-tyrosine phosphatase that contains two tandem of catalytic domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human WEE1 (WEE1Hu) was cloned on the basis of its ability to rescue wee1+ mutants in fission yeast [Igarashi, M., Nagata, A., Jinno, S., Suto, K. & Okayama, H. (1991) Nature (London) 353, 80-83]. Biochemical studies carried out in vitro with recombinant protein demonstrated that WEE1Hu encodes a tyrosine kinase of approximately 49 kDa that phosphorylates p34cdc2 on Tyr-15 [Parker, L. L. & Piwnica-Worms, H. (1992) Science 257, 1955-1957]. To study the regulation of WEE1Hu in human cells, two polyclonal antibodies to bacterially produced p49WEE1Hu were generated. In addition, a peptide antibody generated against amino acids 361-388 of p49WEE1Hu was also used. Unexpectantly, these antibodies recognized a protein with an apparent molecular mass of 95 kDa in HeLa cells, rather than one of 49 kDa. Immunoprecipitates of p95 phosphorylated p34cdc2 on Tyr-15, indicating that p95 is functionally related to p49WEEIHu, and mapping studies demonstrated that p95 is structurally related to p49WEE1Hu. In addition, the substrate specificity of p95 was more similar to that of fission yeast p107wee1 than to that of human p49WEE1. Finally, the kinase activity of p95 toward p34cdc2/cyclin B was severely impaired during mitosis. Taken together, these results indicate that the original WEE1Hu clone isolated in genetic screens encodes only the catalytic domain of human WEE1 and that the authentic human WEE1 protein has an apparent molecular mass of approximately 95 kDa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During T-cell activation, Ser59 in the unique N-terminal region of p56lck is phosphorylated. Mutation of Ser59 to Glu59 mimics Ser59 phosphorylation, and upon CD4 crosslinking, this mutant p56lck induces tyrosine phosphorylation of intracellular proteins distinct from those induced by wild-type p56lck. Mutant and wild-type p56lck have similar affinities for CD4 and similar kinase activities. In glutathione S-transferase fusion proteins, the p56lck Src homology 2 (SH2) domain with the SH3 domain and the unique N-terminal region (including Ser59) has a different binding specificity for phosphotyrosyl proteins than the SH2 domain alone. Either deletion of the unique N-terminal region or mutation of Ser59 to Glu59 in the fusion protein reverts the phosphotyrosyl protein binding specificity back to that of the SH2 domain alone. These results suggest that phosphorylation of Ser59 regulates the function of p56lck by controlling binding specificity of its SH2 domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently cloned the human fms-like tyrosine kinase 4 gene FLT4, whose protein product is related to two vascular endothelial growth factor receptors FLT1 and KDR/FLK1. Here the expression of FLT4 has been analyzed by in situ hybridization during mouse embryogenesis and in adult human tissues. The FLT4 mRNA signals first became detectable in the angioblasts of head mesenchyme, the cardinal vein, and extraembryonally in the allantois of 8.5-day postcoitus (p.c.) embryos. In 12.5-day p.c. embryos, the FLT4 signal decorated developing venous and presumptive lymphatic endothelia, but arterial endothelia were negative. During later stages of development, FLT4 mRNA became restricted to vascular plexuses devoid of red cells, representing developing lymphatic vessels. Only the lymphatic endothelia and some high endothelial venules expressed FLT4 mRNA in adult human tissues. Increased expression occurred in lymphatic sinuses in metastatic lymph nodes and in lymphangioma. Our results suggest that FLT4 is a marker for lymphatic vessels and some high endothelial venules in human adult tissues. They also support the theory on the venous origin of lymphatic vessels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A protein semisynthesis method—expressed protein ligation—is described that involves the chemoselective addition of a peptide to a recombinant protein. This method was used to ligate a phosphotyrosine peptide to the C terminus of the protein tyrosine kinase C-terminal Src kinase (Csk). By intercepting a thioester generated in the recombinant protein with an N-terminal cysteine containing synthetic peptide, near quantitative chemical ligation of the peptide to the protein was achieved. The semisynthetic tail-phosphorylated Csk showed evidence of an intramolecular phosphotyrosine-Src homology 2 interaction and an unexpected increase in catalytic phosphoryl transfer efficiency toward a physiologically relevant substrate compared with the non-tail-phosphorylated control. This work illustrates that expressed protein ligation is a simple and powerful new method in protein engineering to introduce sequences of unnatural amino acids, posttranslational modifications, and biophysical probes into proteins of any size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intracellular signals governing cellular proliferation and developmental progression during lymphocyte development are incompletely understood. The tyrosine kinase Blk is expressed preferentially in the B lineage, but its function in B cell development has been largely unexplored. We have generated transgenic mice expressing constitutively active Blk [Blk(Y495F)] in the B and T lymphoid compartments. Expression of Blk(Y495F) in the B lineage at levels similar to that of endogenous Blk induced B lymphoid tumors of limited clonality, whose phenotypes are characteristic of B cell progenitors at the proB/preB-I to preB-II transition. Expression of constitutively active Blk in the T lineage resulted in the appearance of clonal, thymic lymphomas composed of intermediate single positive cells. Taken together, these results indicate that specific B and T cell progenitor subsets are preferentially susceptible to transformation by Blk(Y495F) and suggest a role for Blk in the control of proliferation during B cell development.