240 resultados para caspase recruitment domain signaling protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small ligand–receptor interactions underlie many fundamental processes in biology and form the basis for pharmacological intervention of human diseases in medicine. We report herein a genetic system, named the yeast three-hybrid system, for detecting ligand–receptor interactions in vivo. This system is adapted from the yeast two-hybrid system with which a third synthetic hybrid ligand is combined. The feasibility of this system was demonstrated using as the hybrid ligand a heterodimer of covalently linked dexamethasone and FK506. Yeast expressing fusion proteins of the hormone binding domain of the rat glucocorticoid receptor fused to the LexA DNA-binding domain and of FKBP12 fused to a transcriptional activation domain activated reporter genes when plated on medium containing the dexamethasone–FK506 heterodimer. The reporter gene activation is completely abrogated in a competitive manner by the presence of excess FK506. Using this system, we screened a Jurkat cDNA library fused to the transcriptional activation domain in yeast expressing the hormone binding domain of rat glucocorticoid receptor–LexA DNA binding domain fusion protein in the presence of dexamethasone–FK506 heterodimer. We isolated overlapping clones of human FKBP12. These results demonstrate that the three-hybrid system can be used to discover receptors for small ligands and to screen for new ligands to known receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Cbl-associated protein (CAP) is a signaling protein that interacts with both c-Cbl and the insulin receptor that may be involved in the specific insulin-stimulated tyrosine phosphorylation of c-Cbl. The restricted expression of CAP in cells metabolically sensitive to insulin suggests an important potential role in insulin action. The expression of CAP mRNA and proteins are increased in 3T3-L1 adipocytes by the insulin sensitizing thiazolidinedione drugs, which are activators of the peroxisome proliferator-activated receptor γ (PPARγ). The stimulation of CAP expression by PPARγ activators results from increased transcription. This increased expression of CAP was accompanied by a potentiation of insulin-stimulated c-Cbl tyrosine phosphorylation. Administration of the thiazolidinedione troglitazone to Zucker (fa/fa) rats markedly increased the expression of the major CAP isoform in adipose tissue. This effect was sustained for up to 12 weeks of treatment and accompanied the ability of troglitazone to prevent the onset of diabetes and its complications. Thus, CAP is the first PPARγ-sensitive gene identified that participates in insulin signaling and may play a role in thiazolidinedione-induced insulin sensitization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and biosynthesis of poly-N-acetyllactosamine display a dramatic change during development and oncogenesis. Poly-N-acetyllactosamines are also modified by various carbohydrate residues, forming functional oligosaccharides such as sialyl Lex. Herein we describe the isolation and functional expression of a cDNA encoding β-1,3-N-acetylglucosaminyltransferase (iGnT), an enzyme that is essential for the formation of poly-N-acetyllactosamine. For this expression cloning, Burkitt lymphoma Namalwa KJM-1 cells were transfected with cDNA libraries derived from human melanoma and colon carcinoma cells. Transfected Namalwa cells overexpressing the i antigen were continuously selected by fluorescence-activated cell sorting because introduced plasmids containing Epstein–Barr virus replication origin can be continuously amplified as episomes. Sibling selection of plasmids recovered after the third consecutive sorting resulted in a cDNA clone that directs the increased expression of i antigen on the cell surface. The deduced amino acid sequence indicates that this protein has a type II membrane protein topology found in almost all mammalian glycosyltransferases cloned to date. iGnT, however, differs in having the longest transmembrane domain among glycosyltransferases cloned so far. The iGnT transcript is highly expressed in fetal brain and kidney and adult brain but expressed ubiquitously in various adult tissues. The expression of the presumed catalytic domain as a fusion protein with the IgG binding domain of protein A enabled us to demonstrate that the cDNA encodes iGnT, the enzyme responsible for the formation of GlcNAcβ1 → 3Galβ1 → 4GlcNAc → R structure and poly-N-acetyllactosamine extension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine is a neuromodulator involved in the control of key physiological functions. Dopamine-dependent signal transduction is activated through the interaction with membrane receptors of the seven-transmembrane domain G protein-coupled family. Among them, dopamine D2 receptor is highly expressed in the striatum and the pituitary gland as well as by mesencephalic dopaminergic neurons. Lack of D2 receptors in mice leads to a locomotor parkinsonian-like phenotype and to pituitary tumors. The D2 receptor promoter has characteristics of a housekeeping gene. However, the restricted expression of this gene to particular neurons and cells points to a strict regulation of its expression by cell-specific transcription factors. We demonstrate here that the D2 receptor promoter contains a functional retinoic acid response element. Furthermore, analysis of retinoic acid receptor-null mice supports our finding and shows that in these animals D2 receptor expression is reduced. This finding assigns to retinoids an important role in the control of gene expression in the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To begin to understand mechanistic differences in endocytosis in neurons and nonneuronal cells, we have compared the biochemical properties of the ubiquitously expressed dynamin-II isoform with those of neuron-specific dynamin-I. Like dynamin-I, dynamin-II is specifically localized to and highly concentrated in coated pits on the plasma membrane and can assemble in vitro into rings and helical arrays. As expected, the two closely related isoforms share a similar mechanism for GTP hydrolysis: both are stimulated in vitro by self-assembly and by interaction with microtubules or the SH3 domain-containing protein, grb2. Deletion of the C-terminal proline/arginine-rich domain from either isoform abrogates self-assembly and assembly-dependent increases in GTP hydrolysis. However, dynamin-II exhibits a ∼threefold higher rate of intrinsic GTP hydrolysis and higher affinity for GTP than dynamin-I. Strikingly, the stimulated GTPase activity of dynamin-II can be >40-fold higher than dynamin-I, due principally to its greater propensity for self-assembly and the increased resistance of assembled dynamin-II to GTP-triggered disassembly. These results are consistent with the hypothesis that self-assembly is a major regulator of dynamin GTPase activity and that the intrinsic rate of GTP hydrolysis reflects a dynamic, GTP-dependent equilibrium of assembly and disassembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A crucial step in lysosomal biogenesis is catalyzed by “uncovering” enzyme (UCE), which removes a covering N-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: 488YHPL and C-terminal 511NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tc1-like transposable elements from teleost fish have been phylogenetically examined to determine the mechanisms involved in their evolution and conserved domains of function. We identified two new functional domains in these elements. The first is a bipartite nuclear localization signal, indicating that transposons can take advantage of the transport machinery of host cells for nuclear uptake of their transposases. The second is a novel combination of a paired domain-related protein motif juxtaposed to a leucine zipper-like domain located in the putative DNA-binding regions of the transposases. This domain coexists with a special inverted repeat structure in certain transposons in such phylogenetically distant hosts as fish and insects. Our data indicate that reassortment of functional domains and horizontal transmission between species are involved in the formation and spread of new types of transposable elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of amyloid fibril formation by beta-amyloid peptide (Abeta) are typical of a nucleation-dependent polymerization mechanism. This type of mechanism suggests that the study of the interaction of Abeta with itself can provide some valuable insights into Alzheimer disease amyloidosis. Interaction of Abeta with itself was explored with the yeast two-hybrid system. Fusion proteins were created by linking the Abeta fragment to a LexA DNA-binding domain (bait) and also to a B42 transactivation domain (prey). Protein-protein interactions were measured by expression of these fusion proteins in Saccharomyces cerevisiae harboring lacZ (beta-galactosidase) and LEU2 (leucine utilization) genes under the control of LexA-dependent operators. This approach suggests that the Abeta molecule is capable of interacting with itself in vivo in the yeast cell nucleus. LexA protein fused to the Drosophila protein bicoid (LexA-bicoid) failed to interact with the B42 fragment fused to Abeta, indicating that the observed Abeta-Abeta interaction was specific. Specificity was further shown by the finding that no significant interaction was observed in yeast expressing LexA-Abeta bait when the B42 transactivation domain was fused to an Abeta fragment with Phe-Phe at residues 19 and 20 replaced by Thr-Thr (AbetaTT), a finding that is consistent with in vitro observations made by others. Moreover, when a peptide fragment bearing this substitution was mixed with native Abeta-(1-40), it inhibited formation of fibrils in vitro as examined by electron microscopy. The findings presented in this paper suggest that the two-hybrid system can be used to study the interaction of Abeta monomers and to define the peptide sequences that may be important in nucleation-dependent aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mutation within the obese gene was recently identified as the genetic basis for obesity in the ob/ob mouse. The obese gene product, leptin, is a 16-kDa protein expressed predominantly in adipose tissue. Consistent with leptin's postulated role as an extracellular signaling protein, human embryonic kidney 293 cells transfected with the obese gene secreted leptin with minimal intracellular accumulation. Upon differentiation of 3T3-L1 preadipocytes into adipocytes, the leptin mRNA was expressed concomitant with mRNAs encoding adipocyte marker proteins. A factor(s) present in calf serum markedly activated expression of leptin by fully differentiated 3T3-L1 adipocytes. A 16-hr fast decreased (by approximately 85%) the leptin mRNA level of adipose tissue of lean (ob/+ or +/+) mice but had no effect on the approximately 4-fold higher level in obese (ob/ob) littermates. Since the mutation at the ob locus fails to produce the functional protein, yet its cognate mRNA is overproduced, it appears that leptin is necessary for its own downregulation. Leptin mRNA was also suppressed in adipose tissue of rats during a 16-hr fast and was rapidly induced during a 4-hr refeeding period. Insulin deficiency provoked by streptozotocin also markedly down-regulated leptin mRNA and this suppression was rapidly reversed by insulin. These results suggest that insulin may regulate the expression of leptin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proinflammatory cytokine interleukin 1 (IL-1) activates the transcription of many genes encoding acute phase and proinflammatory proteins, a function mediated primarily by the transcription factor NF-κB. An early IL-1 signaling event is the recruitment of the Ser/Thr kinase IRAK to the type I IL-1 receptor (IL-1RI). Here we describe the function of a previously identified IL-1 receptor subunit designated IL-1 receptor accessory protein (IL-1RAcP). IL-1 treatment of cells induces the formation of a complex containing both IL-1RI and IL-1RAcP. IRAK is recruited to this complex through its association with IL-1RAcP. Overexpression of an IL-1RAcP mutant lacking its intracellular domain, the IRAK-binding domain, prevented the recruitment of IRAK to the receptor complex and blocked IL-1-induced NF-κB activation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Activation of fibroblast growth factor (FGF) receptors elicits diverse cellular responses including growth, mitogenesis, migration, and differentiation. The intracellular signaling pathways that mediate these important processes are not well understood. In Caenorhabditis elegans, suppressors of clr-1 identify genes, termed soc genes, that potentially mediate or activate signaling through the EGL-15 FGF receptor. We demonstrate that three soc genes, soc-1, soc-2, and sem-5, suppress the activity of an activated form of the EGL-15 FGF receptor, consistent with the soc genes functioning downstream of EGL-15. We show that soc-2 encodes a protein composed almost entirely of leucine-rich repeats, a domain implicated in proteinprotein interactions. We identified a putative human homolog, SHOC-2, which is 54% identical to SOC-2. We find that shoc-2 maps to 10q25, shoc-2 mRNA is expressed in all tissues assayed, and SHOC-2 protein is cytoplasmically localized. Within the leucine-rich repeats of both SOC-2 and SHOC-2 are two YXNX motifs that are potential tyrosine-phosphorylated docking sites for the SEM-5/GRB2 Src homology 2 domain. However, phosphorylation of these residues is not required for SOC-2 function in vivo, and SHOC-2 is not observed to be tyrosine phosphorylated in response to FGF stimulation. We conclude that this genetic system has allowed for the identification of a conserved gene implicated in mediating FGF receptor signaling in C. elegans.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have used the interaction between the erythroid-specific enhancer in hypersensitivity site 2 of the human β-globin locus control region and the globin gene promoters as a paradigm to examine the mechanisms governing promoter/enhancer interactions in this locus. We have demonstrated that enhancer-dependent activation of the globin promoters is dependent on the presence of both a TATA box in the proximal promoter and the binding site for the erythroid-specific heteromeric transcription factor NF-E2 in the enhancer. Mutational analysis of the transcriptionally active component of NF-E2, p45NF-E2, localizes the critical region for this function to a proline-rich transcriptional activation domain in the NH2-terminal 80 amino acids of the protein. In contrast to the wild-type protein, expression of p45 NF-E2 lacking this activation domain in an NF-E2 null cell line fails to support enhancer-dependent transcription in transient assays. More significantly, the mutated protein also fails to reactivate expression of the endogenous β- or α-globin loci in this cell line. Protein-protein interaction studies reveal that this domain of p45 NF-E2 binds specifically to a component of the transcription initiation complex, TATA binding protein associated factor TAFII130. These findings suggest one potential mechanism for direct recruitment of distal regulatory regions of the globin loci to the individual promoters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Subcellular localization directed by specific A kinase anchoring proteins (AKAPs) is a mechanism for compartmentalization of cAMP-dependent protein kinase (PKA). Using a two-hybrid screen, a novel AKAP was isolated. Because it interacts with both the type I and type II regulatory subunits, it was defined as a dual specific AKAP or D-AKAP1. Here we report the cloning and characterization of another novel cDNA isolated from that screen. This new member of the D-AKAP family, D-AKAP2, also binds both types of regulatory subunits. A message of 5 kb pairs was detected for D-AKAP2 in all embryonic stages and in all adult tissues tested. In brain, skeletal muscle, kidney, and testis, a 10-kb mRNA was identified. In testis, several small mRNAs were observed. Therefore, D-AKAP2 represents a novel family of proteins. cDNA cloning from a mouse testis library identified the full length D-AKAP2. It is composed of 372 amino acids which includes the R binding fragment, residues 333–372, at its C-terminus. Based on coprecipitation assays, the R binding domain interacts with the N-terminal dimerization domain of RIα and RIIα. A putative RGS domain was identified near the N-terminal region of D-AKAP2. The presence of this domain raises the intriguing possibility that D-AKAP2 may interact with a Gα protein thus providing a link between the signaling machinery at the plasma membrane and the downstream kinase.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Convincing evidence has accumulated to identify the Frizzled proteins as receptors for the Wnt growth factors. In parallel, a number of secreted frizzled-like proteins with a conserved N-terminal frizzled motif have been identified. One of these proteins, Frzb-1, binds Wnt-1 and Xwnt-8 proteins and antagonizes Xwnt-8 signaling in Xenopus embryos. Here we report that Frzb-1 blocks Wnt-1 induced cytosolic accumulation of β-catenin, a key component of the Wnt signaling pathway, in human embryonic kidney cells. Structure/function analysis reveals that complete removal of the frizzled domain of Frzb-1 abolishes the Wnt-1/Frzb-1 protein interaction and the inhibition of Wnt-1 mediated axis duplication in Xenopus embryos. In contrast, removal of the C-terminal portion of the molecule preserves both Frzb-Wnt binding and functional inhibition of Wnt signaling. Partial deletions of the Frzb-1 cysteine-rich domain maintain Wnt-1 interaction, but functional inhibition is lost. Taken together, these findings support the conclusion that the frizzled domain is necessary and sufficient for both activities. Interestingly, Frzb-1 does not block Wnt-5A signaling in a Xenopus functional assay, even though Wnt-5A coimmunoprecipitates with Frzb-1, suggesting that coimmunoprecipitation does not necessarily imply inhibition of Wnt function.