64 resultados para Phenotypic plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory conditioning (associative learning) causes reorganization of the cochleotopic (frequency) maps of the primary auditory cortex (AI) and the inferior colliculus. Focal electric stimulation of the AI also evokes basically the same cortical and collicular reorganization as that caused by conditioning. Therefore, part of the neural mechanism for the plasticity of the central auditory system caused by conditioning can be explored by focal electric stimulation of the AI. The reorganization is due to shifts in best frequencies (BFs) together with shifts in frequency-tuning curves of single neurons. In the AI of the Mongolian gerbil (Meriones unguiculatus) and the posterior division of the AI of the mustached bat (Pteronotus parnellii), focal electric stimulation evokes BF shifts of cortical auditory neurons located within a 0.7-mm distance along the frequency axis. The amount and direction of BF shift differ depending on the relationship in BF between stimulated and recorded neurons, and between the gerbil and mustached bat. Comparison in BF shift between different mammalian species and between different cortical areas of a single species indicates that BF shift toward the BF of electrically stimulated cortical neurons (centripetal BF shift) is common in the AI, whereas BF shift away from the BF of electrically stimulated cortical neurons (centrifugal BF shift) is special. Therefore, we propose a hypothesis that reorganization, and accordingly organization, of cortical auditory areas caused by associative learning can be quite different between specialized and nonspecialized (ordinary) areas of the auditory cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is believed that little recovery occurs after adult mammalian spinal cord injury, in fact significant spontaneous functional improvement commonly occurs after spinal cord injury in humans. To investigate potential mechanisms underlying spontaneous recovery, lesions of defined components of the corticospinal motor pathway were made in adult rats in the rostral cervical spinal cord or caudal medulla. Following complete lesions of the dorsal corticospinal motor pathway, which contains more than 95% of all corticospinal axons, spontaneous sprouting from the ventral corticospinal tract occurred onto medial motoneuron pools in the cervical spinal cord; this sprouting was paralleled by functional recovery. Combined lesions of both dorsal and ventral corticospinal tract components eliminated sprouting and functional recovery. In addition, functional recovery was also abolished if dorsal corticospinal tract lesions were followed 5 weeks later by ventral corticospinal tract lesions. We found extensive spontaneous structural plasticity as a mechanism correlating with functional recovery in motor systems in the adult central nervous system. Experimental enhancement of spontaneous plasticity may be useful to promote further recovery after adult central nervous system injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the fibroblast growth factor (FGF) family play a critical role in embryonic lung development and adult lung physiology. The in vivo investigation of the role FGFs play in the adult lung has been hampered because the constitutive pulmonary expression of these factors often has deleterious effects and frequently results in neonatal lethality. To circumvent these shortcomings, we expressed FGF-3 in the lungs under the control of the progesterone antagonist-responsive binary transgenic system. Four binary transgenic lines were obtained that showed ligand-dependent induction of FGF-3 with induced levels of FGF-3 expression dependent on the levels of expression of the GLp65 regulator as well as the dose of the progesterone antagonist, RU486, administered. FGF-3 expression in the adult mouse lung resulted in two phenotypes depending on the levels of induction of FGF-3. Low levels of FGF-3 expression resulted in massive free alveolar macrophage infiltration. High levels of FGF-3 expression resulted in diffuse alveolar type II cell hyperplasia. Both phenotypes were reversible after the withdrawal of RU486. This system will be a valuable means of investigating the diverse roles of FGFs in the adult lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microglia arise from CD45+ bone marrow precursors that colonize the fetal brain and play a key role in central nervous system inflammatory conditions. We report that parenchymal microglia are uncommitted myeloid progenitors of immature dendritic cells and macrophages by several criteria, including surface expression of “empty” class II MHC protein and their cysteine protease (cathepsin) profile. Microglia express receptors for stem cell factor and can be skewed toward more dendritic cell or macrophage-like profiles in response to the lineage growth factors granulocyte/macrophage colony-stimulating factor or macrophage colony-stimulating factor. Thus, in contrast to other organs, where terminally differentiated populations of resident dendritic cells and/or macrophages outnumber colonizing precursors, the majority of microglia within the brain remain in an undifferentiated state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory pain manifests as spontaneous pain and pain hypersensitivity. Spontaneous pain reflects direct activation of specific receptors on nociceptor terminals by inflammatory mediators. Pain hypersensitivity is the consequence of early posttranslational changes, both in the peripheral terminals of the nociceptor and in dorsal horn neurons, as well as later transcription-dependent changes in effector genes, again in primary sensory and dorsal horn neurons. This inflammatory neuroplasticity is the consequence of a combination of activity-dependent changes in the neurons and specific signal molecules initiating particular signal-transduction pathways. These pathways phosphorylate membrane proteins, changing their function, and activate transcription factors, altering gene expression. Two distinct aspects of sensory neuron function are changed as a result of these processes, basal sensitivity, or the capacity of peripheral stimuli to evoke pain, and stimulus-evoked hypersensitivity, the capacity of certain inputs to generate prolonged alterations in the sensitivity of the system. Posttranslational changes largely alter basal sensitivity. Transcriptional changes both potentiate the system and alter neuronal phenotype. Potentiation occurs as a result of the up-regulation in the dorsal root ganglion of centrally acting neuromodulators and simultaneously in the dorsal horn of their receptors. This means that the response to subsequent inputs is augmented, particularly those that induce stimulus-induced hypersensitivity. Alterations in phenotype includes the acquisition by A fibers of neurochemical features typical of C fibers, enabling these fibers to induce stimulus-evoked hypersensitivity, something only C fiber inputs normally can do. Elucidation of the molecular mechanisms responsible provides new opportunities for therapeutic approaches to managing inflammatory pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical representational plasticity has been well documented after peripheral and central injuries or improvements in perceptual and motor abilities. This has led to inferences that the changes in cortical representations parallel and account for the improvement in performance during the period of skill acquisition. There have also been several examples of rapidly induced changes in cortical neuronal response properties, for example, by intracortical microstimulation or by classical conditioning paradigms. This report describes similar rapidly induced changes in a cortically mediated perception in human subjects, the ventriloquism aftereffect, which presumably reflects a corresponding change in the cortical representation of acoustic space. The ventriloquism aftereffect describes an enduring shift in the perception of the spatial location of acoustic stimuli after a period of exposure of spatially disparate and simultaneously presented acoustic and visual stimuli. Exposure of a mismatch of 8° for 20–30 min is sufficient to shift the perception of acoustic space by approximately the same amount across subjects and acoustic frequencies. Given that the cerebral cortex is necessary for the perception of acoustic space, it is likely that the ventriloquism aftereffect reflects a change in the cortical representation of acoustic space. Comparisons between the responses of single cortical neurons in the behaving macaque monkey and the stimulus parameters that give rise to the ventriloquism aftereffect suggest that the changes in the cortical representation of acoustic space may begin as early as the primary auditory cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of Histoplasma capsulatum as an intracellular pathogen depends completely on successful conversion of the saprophytic mycelial (mold) form of this fungus to a parasitic yeast form. It is therefore not surprising that yeast phase-specific genes and gene products are proving to be important for survival and proliferation of H. capsulatum within macrophages. In this study, we have focused on the role and regulation of two yeast-specific characteristics: α-(1,3)-glucan, a cell wall polysaccharide modulated by cell-density (quorum) sensing, and a secreted calcium-binding protein (CBP) that is essential for pathogenicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sound localization relies on the neural processing of monaural and binaural spatial cues that arise from the way sounds interact with the head and external ears. Neurophysiological studies of animals raised with abnormal sensory inputs show that the map of auditory space in the superior colliculus is shaped during development by both auditory and visual experience. An example of this plasticity is provided by monaural occlusion during infancy, which leads to compensatory changes in auditory spatial tuning that tend to preserve the alignment between the neural representations of visual and auditory space. Adaptive changes also take place in sound localization behavior, as demonstrated by the fact that ferrets raised and tested with one ear plugged learn to localize as accurately as control animals. In both cases, these adjustments may involve greater use of monaural spectral cues provided by the other ear. Although plasticity in the auditory space map seems to be restricted to development, adult ferrets show some recovery of sound localization behavior after long-term monaural occlusion. The capacity for behavioral adaptation is, however, task dependent, because auditory spatial acuity and binaural unmasking (a measure of the spatial contribution to the “cocktail party effect”) are permanently impaired by chronically plugging one ear, both in infancy but especially in adulthood. Experience-induced plasticity allows the neural circuitry underlying sound localization to be customized to individual characteristics, such as the size and shape of the head and ears, and to compensate for natural conductive hearing losses, including those associated with middle ear disease in infancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial–mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-β (TGF-β) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-β-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-β within 4 hours after treatment. TGF-β-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell–matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-β. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis.