132 resultados para Cytoskeleton


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion proteins between the green fluorescent protein (GFP) and the cytoskeleton proteins Act1p (actin), Sac6p (yeast fimbrin homolog), and Abp1p in budding yeast (Saccharomyces cerevisiae) localize to the cortical actin patches. The actin fusions could not function as the sole actin source in yeast, but fusions between the actin-binding proteins Abp1p and Sac6p complement fully the phenotypes associated with their gene deletions. Direct observation in vivo reveals that the actin cortical patches move. Movement of actin patches is constrained to the asymmetric distribution of the patches in growing cells, and this movement is greatly reduced when metabolic inhibitors such as sodium azide are added. Fusion protein-labeled patches are normally distributed during the yeast cell cycle and during mating. In vivo observation made possible the visualization of actin patches during sporulation as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using indirect immunofluorescence microscopy and biochemical techniques, we have determined that approximately one-third of the total mitogen-activated protein kinase (MAPK) is associated with the microtubule cytoskeleton in NIH 3T3 mouse fibroblasts. This population of enzyme can be separated from the soluble form that is found distributed throughout the cytosol and is also present in the nucleus after mitogen stimulation. The microtubule-associated enzyme pool constitutes half of all detectable MAPK activity after mitogenic stimulation. These findings extend the known in vivo associations of MAPK with microtubules to include the entire microtubule cytoskeleton of proliferating cells, and they suggest that a direct association of MAPK with microtubules may be in part responsible for the observed correlations between MAPK activities and cytoskeletal alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The T-cell antigen receptor zeta chain plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. zeta chain can associate with certain protein tyrosine kinases and retains the capacity to transduce signals independently of the other receptor subunits. Thus, zeta chain could couple cell-surface-expressed T-cell antigen receptors to the intracellular signal-transduction apparatus by its association with various intracellular molecules in addition to tyrosine kinases. In the process of searching for zeta chain-associated molecules we observed that after lysis of resting T cells with Triton X-100, zeta chain is localized in the detergent-insoluble fraction, in addition to its presence in the detergent-soluble fraction. Treatment of T cells with cytochalasin B, an actin-depolymerizing agent, leads to the complete dissociation of zeta chain from the Triton-insoluble fraction, suggesting a linkage between zeta chain and the cytoskeletal matrix. We have also determined that cytoskeletal-associated zeta chain is expressed on the cell surface. Furthermore, a tyrosine-phosphorylated 16-kDa zeta chain was detected only in the Triton-insoluble cytoskeletal fraction of resting T cells. zeta chain also maintains its association with the cytoskeleton when expressed in COS cells, inferring that the cytoskeletal elements involved in this linkage may be ubiquitous. Finally, we have localized a 42-amino acid region in the intracytoplasmic domain of zeta chain, which is crucial for maximal interaction between zeta chain and the cytoskeleton. Anchorage of cell-surface-expressed zeta chain to the cytoskeleton in resting T cells may facilitate recycling of receptor complexes and/or allow the transduction of external stimuli into the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis COP1 acts inside the nucleus to suppress photomorphogenic cellular development, and light inactivation of COP1 may involve a specific control of its nuclear activity in hypocotyls and cotyledons, but not in roots, of developing seedlings. To understand the molecular mechanisms of COP1 action during light-mediated development, we initiated a screen for Arabidopsis cDNAs encoding proteins which interact directly with COP1 in vitro as a step to identify the cellular components involved. We report here the isolation and characterization of a cDNA clone encoding a protein designated CIP1 (COP1-interactive protein 1). CIP1 is predominantly alpha-helical and most likely involved in coiled-coil formation. It interacts specifically with the putative coiled-coil region of COP1 in vitro. Further, CIP1 is encoded by a single gene in Arabidopsis, and its mRNA and protein levels are not regulated by light. Immunofluorescent labeling of CIP1 in Arabidopsis seedling protoplasts demonstrated that CIP1 is part of, or associated with, a cytoskeletal structure in hypocotyl and cotyledon cells, but not in roots. Our results are consistent with a possible role of CIP1 in mediating light control of COP1 nuclear activity by regulating its nucleocytoplasmic partitioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inositol polyphosphate 4-phosphatase (4-phosphatase) is an enzyme that catalyses the hydrolysis of the 4-position phosphate from phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. In human platelets the formation of this phosphatidylinositol, by the actions of phosphatidylinositol 3-kinase (PI 3-kinase), correlates with irreversible platelet aggregation. We have shown previously that a phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase forms a complex with the p85 subunit of PI 3-kinase. In this study we investigated whether PI 3-kinase also forms a complex with the 4-phosphatase in human platelets. Immunoprecipitates of the p85 subunit of PI 3-kinase from human platelet cytosol contained 4-phosphatase enzyme activity and a 104-kDa polypeptide recognized by specific 4-phosphatase antibodies. Similarly, immunoprecipitates made using 4-phosphatase-specific antibodies contained PI 3-kinase enzyme activity and an 85-kDa polypeptide recognized by antibodies to the p85 adapter subunit of PI 3-kinase. After thrombin activation, the 4-phosphatase translocated to the actin cytoskeleton along with PI 3-kinase in an integrin- and aggregation-dependent manner. The majority of the PI 3-kinase/4-phosphatase complex (75%) remained in the cytosolic fraction. We propose that the complex formed between the two enzymes serves to localize the 4-phosphatase to sites of PtdIns(3,4)P2 production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Containing most of the L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) on their tips, microvilli are believed to promote the initial arrest of neutrophils on endothelium. At the rolling stage following arrest, the lifetimes of the involved molecular bonds depend on the pulling force imposed by the shear stress of blood flow. With two different methods, electron microscopy and micropipette manipulation, we have obtained two comparable neutrophil microvillus lengths, both ≈0.3 μm in average. We have found also that, under a pulling force, a microvillus can be extended (microvillus extension) or a long thin membrane cylinder (a tether) can be formed from it (tether formation). If the force is ≤34 pN (± 3 pN), the length of the microvillus will be extended; if the force is >61 pN (± 5 pN), a tether will be formed from the microvillus at a constant velocity, which depends linearly on the force. When the force is between 34 pN and 61 pN (transition zone), the degree of association between membrane and cytoskeleton in individual microvilli will dictate whether microvillus extension or tether formation occurs. When a microvillus is extended, it acts like a spring with a spring constant of ≈43 pN/μm. In contrast to a rigid or nonextendible microvillus, both microvillus extension and tether formation can decrease the pulling force imposed on the adhesive bonds, and thus prolonging the persistence of the bonds at high physiological shear stresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) was found to inhibit differentiation of myogenic cells only when they were grown to high density. Inhibition also occurred when myogenic cells were cocultured with other types of mesenchymal cells but not when they were cocultured with epithelial cells. It is therefore possible that some density-dependent signaling mediates the intracellular response to TGF-β. Within 30 min of treatment, TGF-β induced translocation of MEF2, but not MyoD, myogenin, or p21, to the cytoplasm of myogenic cells grown to high density. Translocation was reversible on withdrawal of TGF-β. By using immune electron microscopy and Western blot analysis on subcellular fractions, MEF2 was shown to be tightly associated with cytoskeleton membrane components. To test whether MEF2 export from the nucleus was causally related to the inhibitory action of TGF-β, we transfected C2C12 myoblasts with MEF2C containing the nuclear localization signal of simian virus 40 large T antigen (nlsSV40). Myogenic cells expressing the chimerical MEF2C/nlsSV40, but not wild-type MEF2C, retained this transcription factor in the nucleus and were resistant to the inhibitory action of TGF-β. We propose a mechanism in which the inhibition of myogenesis by TGF-β is mediated through MEF2 localization to the cytoplasm, thus preventing it from participating in an active transcriptional complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rice blast fungus, Magnaporthe grisea, generates enormous turgor pressure within a specialized cell called the appressorium to breach the surface of host plant cells. Here, we show that a mitogen-activated protein kinase, Mps1, is essential for appressorium penetration. Mps1 is 85% similar to yeast Slt2 mitogen-activated protein kinase and can rescue the thermosensitive growth of slt2 null mutants. The mps1–1Δ mutants of M. grisea have some phenotypes in common with slt2 mutants of yeast, including sensitivity to cell-wall-digesting enzymes, but display additional phenotypes, including reduced sporulation and fertility. Interestingly, mps1–1Δ mutants are completely nonpathogenic because of the inability of appressoria to penetrate plant cell surfaces, suggesting that penetration requires remodeling of the appressorium wall through an Mps1-dependent signaling pathway. Although mps1–1Δ mutants are unable to cause disease, they are able to trigger early plant-cell defense responses, including the accumulation of autofluorescent compounds and the rearrangement of the actin cytoskeleton. We conclude that MPS1 is essential for pathogen penetration; however, penetration is not required for induction of some plant defense responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using clathrin-minus Dictyostelium cells, we identified a novel requirement for clathrin during cytokinesis. In suspension culture, clathrin-minus cells failed to divide and became large and multinucleate. This cytokinesis deficiency was not attributable to a pleiotropic effect on the actomyosin cytoskeleton, since other cellular events driven by myosin II (e.g., cortical contraction and capping of concanavalin A receptors) remained intact in clathrin-minus cells. Examination of cells expressing myosin II tagged with green fluorescent protein showed that clathrin-minus cells failed to assemble myosin II into a functional contractile ring. This inability to localize myosin II to a particular location was specific for cytokinesis, since clathrin-minus cells moving across a substrate localized myosin II properly to their posterior cortexes. These results demonstrate that clathrin is essential for construction of a functional contractile ring during cell division.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified and molecularly characterized a human protein with a Mr of 40,880 Da. After UV irradiation of HeLa cells, this protein was cross-linked to poly(A)-containing mRNA and was therefore designated mrnp 41 (for mRNA binding protein of 41 kDa). Cell fractionation and immunoblotting showed mrnp 41 in both the cytoplasm and the nucleus and particularly in the nuclear envelope. Immunofluorescence microscopy localized mrnp 41 to distinct foci in the nucleoplasm, to the nuclear rim, and to meshwork-like structures throughout the cytoplasm. The cytoplasmic meshwork staining was disrupted by prior treatment of cells with the actin filament- or microtubule-disrupting drugs cytochalasin or nocodazole, respectively, suggesting association of mrnp 41 with the cytoskeleton. Double immunofluorescence with antibodies against mrnp 41 and the cytoplasmic poly(A) binding protein showed colocalization to the cytoplasmic meshwork. Immunogold electronmicroscopy confirmed mrnp 41’s cytoplasmic and nucleoplasmic localization and revealed a striking labeling of nuclear pore complexes. Together these data suggest that mrnp 41 may function in nuclear export of mRNPs and/or in cytoplasmic transport on, or attachment to, the cytoskeleton. Consistent with a role of mrnp 41 in nuclear export are previous reports that mutations in homologs of mrnp 41 in Schizosaccharomyces pombe, designated Rae1p, or in Saccharomyces cerevisiae, designated Gle2p, result in mRNA accumulation in the nucleus although it is presently not known whether these homologs are mRNA binding proteins as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the role of intracellular Ca2+ in compaction, the first morphogenetic event in embryogenesis, we analyzed preimplantation mouse embryos under several decompacting conditions, including depletion of extracellular Ca2+, blocking of Ca2+ channels, and inhibition of microfilaments, calmodulin, and intracellular Ca2+ release. Those treatments induced decompaction of mouse morulae and simultaneously induced changes in cytosolic free Ca2+ concentration and deregionalization of E-cadherin and fodrin. When morulae were allowed to recompact, the location of both proteins recovered. In contrast, actin did not change its cortical location with compaction nor with decompaction-recompaction. Calmodulin localized in areas opposite to cell–cell contacts in eight-cell stage embryos before and after compaction. Inhibition of calmodulin with trifluoperazine induced its delocalization while morulae decompacted. A nonspecific rise of intracellular free Ca2+ provoked by ionomycin did not affect the compacted shape. Moreover, the same decompacting treatments when applied to uncompacted embryos did not produce any change in intracellular Ca2+. Our results demonstrate that in preimplantation mouse embryos experimentally induced stage-specific changes of cell shape are accompanied by changes of intracellular free Ca2+ and redistribution of the cytoskeleton-related proteins E-cadherin, fodrin, and calmodulin. We conclude that intracellular Ca2+ specifically is involved in compaction and probably regulates the function and localization of cytoskeleton elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammalian Cdk5 is a member of the cyclin-dependent kinase family that is activated by a neuron-specific regulator, p35, to regulate neuronal migration and neurite outgrowth. p35/Cdk5 kinase colocalizes with and regulates the activity of the Pak1 kinase in neuronal growth cones and likely impacts on actin cytoskeletal dynamics through Pak1. Here, we describe a functional homologue of Cdk5 in budding yeast, Pho85. Like Cdk5, Pho85 has been implicated in actin cytoskeleton regulation through phosphorylation of an actin-regulatory protein. Overexpression of CDK5 in yeast cells complemented most phenotypes associated with pho85Δ, including defects in the repression of acid phosphatase expression, sensitivity to salt, and a G1 progression defect. Consistent with the functional complementation, Cdk5 associated with and was activated by the Pho85 cyclins Pho80 and Pcl2 in yeast cells. In a reciprocal series of experiments, we found that Pho85 associated with the Cdk5 activators p35 and p25 to form an active kinase complex in mammalian and insect cells, supporting our hypothesis that Pho85 and Cdk5 are functionally related. Our results suggest the existence of a functionally conserved pathway involving Cdks and actin-regulatory proteins that promotes reorganization of the actin cytoskeleton in response to regulatory signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatic endothelial fenestrae are dynamic structures that act as a sieving barrier to control the extensive exchange of material between the blood and the liver parenchyma. Alterations in the number or diameter of fenestrae by drugs, hormones, toxins, and diseases can produce serious perturbations in liver function. Previous studies have shown that disassembly of actin by cytochalasin B or latrunculin A caused a remarkable increase in the number of fenestrae and established the importance of the actin cytoskeleton in the numerical dynamics of fenestrae. So far, however, no mechanism or structure has been described to explain the increase in the number of fenestrae. Using the new actin inhibitor misakinolide, we observed a new structure that appears to serve as a fenestrae-forming center in hepatic endothelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulated evidence attributes noncatalytic morphogenic activitie(s) to acetylcholinesterase (AChE). Despite sequence homologies, functional overlaps between AChE and catalytically inactive AChE-like cell surface adhesion proteins have been demonstrated only for the Drosophila protein neurotactin. Furthermore, no mechanism had been proposed to enable signal transduction by AChE, an extracellular enzyme. Here, we report impaired neurite outgrowth and loss of neurexin Iα mRNA under antisense suppression of AChE in PC12 cells (AS-ACHE cells). Neurite growth was partially rescued by addition of recombinant AChE to the solid substrate or by transfection with various catalytically active and inactive AChE variants. Moreover, overexpression of the homologous neurexin I ligand, neuroligin-1, restored both neurite extension and expression of neurexin Iα. Differential PCR display revealed expression of a novel gene, nitzin, in AS-ACHE cells. Nitzin displays 42% homology to the band 4.1 protein superfamily capable of linking integral membrane proteins to the cytoskeleton. Nitzin mRNA is high throughout the developing nervous system, is partially colocalized with AChE, and increases in rescued AS-ACHE cells. Our findings demonstrate redundant neurite growth-promoting activities for AChE and neuroligin and implicate interactions of AChE-like proteins and neurexins as potential mediators of cytoarchitectural changes supporting neuritogenesis.