29 resultados para prematuridade fetal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess whether heterozygosity of the donor cell genome was a general parameter crucial for long-term survival of cloned animals, we tested the ability of embryonic stem (ES) cells with either an inbred or F1 genetic background to generate cloned mice by nuclear transfer. Most clones derived from five F1 ES cell lines survived to adulthood. In contrast, clones from three inbred ES cell lines invariably died shortly after birth due to respiratory failure. Comparison of mice derived from nuclear cloning, in which a complete blastocyst is derived from a single ES cell, and tetraploid blastocyst complementation, in which only the inner cell mass is formed from a few injected ES cells, allows us to determine which phenotypes depend on the technique or on the characteristics of the ES cell line. Neonatal lethality also has been reported in mice entirely derived from inbred ES cells that had been injected into tetraploid blastocysts (ES cell-tetraploids). Like inbred clones, ES cell-tetraploid pups derived from inbred ES cell lines died shortly after delivery with signs of respiratory distress. In contrast, most ES cell-tetraploid neonates, derived from six F1 ES cell lines, developed into fertile adults. Cloned pups obtained from both inbred and F1 ES cell nuclei frequently displayed increased placental and birth weights whereas ES cell-tetraploid pups were of normal weight. The potency of F1 ES cells to generate live, fertile adults was not lost after either long-term in vitro culture or serial gene targeting events. We conclude that genetic heterozygosity is a crucial parameter for postnatal survival of mice that are entirely derived from ES cells by either nuclear cloning or tetraploid embryo complementation. In addition, our results demonstrate that tetraploid embryo complementation using F1 ES cells represents a simple, efficient procedure for deriving animals with complex genetic alterations without the need for a chimeric intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core binding factor beta (CBF beta) is considered to be a transcriptional coactivator that dimerizes with transcription factors core binding factor alpha 1 (CBFA1), -2, and -3, and enhances DNA binding capacity of these transcription factors. CBF beta and CBFA2, which is also called acute myeloid leukemia 1 gene, are frequently involved in chromosomal translocations in human leukemia. To elucidate the function of CBF beta, mice carrying a mutation in the Cbfb locus were generated. Homozygous mutant embryos died between embryonic days 11.5-13.5 due to hemorrhage in the central nervous system. Mutant embryos had primitive erythropoiesis in yolk sac but lacked definitive hematopoiesis in fetal liver. In the yolk sac of mutant embryos, no erythroid or myeloid progenitors of definitive hematopoietic origin were detected, and the expression of flk-2/flt-3, the marker gene for early precursor cells of definitive hematopoiesis, was absent. These data suggest that Cbfb is essential for definitive hematopoiesis in liver, especially for the commitment to early hematopoietic precursor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At birth, pulmonary vasodilation occurs as air-breathing life begins. The mechanism of O2-induced pulmonary vasodilation is unknown. We proposed that O2 causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel (KCa) via a cyclic nucleotide-dependent kinase. We tested this hypothesis in hemodynamic studies in acutely prepared fetal lambs and in patch-clamp studies on resistance fetal pulmonary artery smooth muscle cells. Fetal O2 tension (PaO2) was increased by ventilating the ewe with 100% O2, causing fetal total pulmonary resistance to decrease from 1.18 +/- 0.14 to 0.41 +/- 0.03 mmHg per ml per min. Tetraethylammonium and iberiotoxin, preferential KCa-channel inhibitors, attenuated O2-induced fetal pulmonary vasodilation, while glibenclamide, an ATP-sensitive K+-channel antagonist, had no effect. Treatment with either a guanylate cyclase antagonist (LY83583) or cyclic nucleotide-dependent kinase inhibitors (H-89 and KT 5823) significantly attenuated O2-induced fetal pulmonary vasodilation. Under hypoxic conditions (PaO2 = 25 mmHg), whole-cell K+-channel currents (Ik) were small and were inhibited by 1 mM tetraethylammonium or 100 nM charybdotoxin (CTX; a specific KCa-channel blocker). Normoxia (PaO2 = 120 mmHg) increased Ik by more than 300%, and this was reversed by 100 nM CTX. Nitric oxide also increased Ik. Resting membrane potential was -37.2 +/- 1.9 mV and cells depolarized on exposure to CTX, while hyperpolarizing in normoxia. We conclude that O2 causes fetal pulmonary vasodilation by stimulating a cyclic nucleotide-dependent kinase, resulting in KCa-channel activation, membrane hyperpolarization, and vasodilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the usefulness of in vivo mode for the investigation of the pathophysiology of human immunodeficiency virus (HIV) infection, we modified the construction of SCID mice implanted with human fetal thymus and liver (thy/liv-SCID-hu mice) so that the peripheral blood of the mice contained significant numbers of human monocytes and T cells. After inoculation with HIV-1(59), a primary patient isolate capable of infecting monocytes and T cells, the modified thy/liv-SCID-hu mice developed disseminated HIV infection that was associated with plasma viremia. The development of plasma viremia and HIV infection in thy/liv-SCID-hu mice inoculated with HIV-1(59) was inhibited by acute treatment with human interleukin (IL) 10 but not with human IL-12. The human peripheral blood mononuclear cells in these modified thy/liv-SCID-hu mice were responsive to in vivo treatment with exogenous cytokines. Human interferon gamma expression in the circulating human peripheral blood mononuclear cells was induced by treatment with IL-12 and inhibited by treatment with IL-10. Thus, these modified thy/liv-SCID-hu mice should prove to be a valuable in vivo model for examining the role of immunomodulatory therapy in modifying HIV infection. Furthermore, our demonstration of the vivo inhibitory effect of IL-10 on acute HIV infection suggests that further studies may be warranted to evaluate whether there is a role for IL-10 therapy in preventing HIV infection in individuals soon after exposure to HIV such as for children born to HIV-infected mothers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycystic kidney disease 1 (PKD1) is the major locus of the common genetic disorder autosomal dominant polycystic kidney disease. We have studied PKD1 mRNA, with an RNase protection assay, and found widespread expression in adult tissue, with high levels in brain and moderate signal in kidney. Expression of the PKD1 protein, polycystin, was assessed in kidney using monoclonal antibodies to a recombinant protein containing the C terminus of the molecule. In fetal and adult kidney, staining is restricted to epithelial cells. Expression in the developing nephron is most prominent in mature tubules, with lesser staining in Bowman's capsule and the proximal ureteric bud. In the nephrogenic zone, detectable signal was observed in comma- and S-shaped bodies as well as the distal branches of the ureteric bud. By contrast, uninduced mesenchyme and glomerular tufts showed no staining. In later fetal (>20 weeks) and adult kidney, strong staining persists in cortical tubules with moderate staining detected in the loops of Henle and collecting ducts. These results suggest that polycystin's major role is in the maintenance of renal epithelial differentiation and organization from early fetal life. Interestingly, polycystin expression, monitored at the mRNA level and by immunohistochemistry, appears higher in cystic epithelia, indicating that the disease does not result from complete loss of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare nucleated fetal cells circulate within maternal blood. Noninvasive prenatal diagnosis by isolation and genetic analysis of these cells is currently being undertaken. We sought to determine if genetic evidence existed for persistent circulation of fetal cells from prior pregnancies. Venous blood samples were obtained from 32 pregnant women and 8 nonpregnant women who had given birth to males 6 months to 27 years earlier. Mononuclear cells were sorted by flow cytometry using antibodies to CD antigens 3, 4, 5, 19, 23, 34, and 38. DNA within sorted cells, amplified by PCR for Y chromosome sequences, was considered predictive of a male fetus or evidence of persistent male fetal cells. In the 32 pregnancies, male DNA was detected in 13 of 19 women carrying a male fetus. In 4 of 13 pregnancies with female fetuses, male DNA was also detected. All of the 4 women had prior pregnancies; 2 of the 4 had prior males and the other 2 had terminations of pregnancy. In 6 of the 8 nonpregnant women, male DNA was detected in CD34+CD38+ cells, even in a woman who had her last son 27 years prior to blood sampling. Our data demonstrate the continued maternal circulation of fetal CD34+ or CD34+CD38+ cells from a prior pregnancy. The prolonged persistence of fetal progenitor cells may represent a human analogue of the microchimerism described in the mouse and may have significance in development of tolerance of the fetus. Pregnancy may thus establish a long-term, low-grade chimeric state in the human female.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smooth muscle cell plasticity is considered a prerequisite for atherosclerosis and restenosis following angioplasty and bypass surgery. Identification of transcription factors that specify one smooth muscle cell phenotype over another therefore may be of major importance in understanding the molecular basis of these vascular disorders. Homeobox genes exemplify one class of transcription factors that could govern smooth muscle cell phenotypic diversity. Accordingly, we screened adult and fetal human smooth muscle cell cDNA libraries with a degenerate oligonucleotide corresponding to a highly conserved region of the homeodomain with the idea that homeobox genes, if present, would display a smooth muscle cell phenotype-dependent pattern of expression. No homeobox genes were detected in the adult human smooth muscle cell library; however, five nonparalogous homeobox genes were uncovered from the fetal library (HoxA5, HoxA11, HoxB1, HoxB7, and HoxC9). Northern blotting of adult and fetal tissues revealed low and restricted expression of all five homeobox genes. No significant differences in transcripts of HoxA5, HoxA11, and HoxB1 were detected between adult or fetal human smooth muscle cells in culture. HoxB7 and HoxC9, however, showed preferential mRNA expression in fetal human smooth muscle cells that appeared to correlate with the age of the donor. This phenotype-dependent expression of homeobox genes was also noted in rat pup versus adult smooth muscle cells. While similar differences in gene expression have been reported between subsets of smooth muscle cells from rat vessels of different-aged animals or clones of rat smooth muscle, our findings represent a demonstration of a transcription factor distinguishing two human smooth muscle cell phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thy-1loSca-1+Lin-Mac-1+CD4- cells have been isolated from the livers of C57BL-Thy-1.1 fetuses. This population appears to be an essentially pure population of hematopoietic stem cells (HSC), in that injection of only six cells into lethally irradiated adult recipients yields a limit dilution frequency of donor cell-reconstituted mice. Sixty-seven to 77% of clones in this population exhibit long-term multilineage progenitor activity. This population appears to include all long-term multilineage reconstituting progenitors in the fetal liver. A high proportion of cells are in cycle, and the absolute number of cells in this population doubles daily in the fetal liver until 14.5 days postcoitum. At 15.5 days postcoitum, the frequency of this population falls dramatically. Long-term reconstituting HSC clones from the fetal liver give rise to higher levels of reconstitution in lethally irradiated mice than long-term reconstituting HSC from the bone marrow. The precise phenotypic and functional characteristics of HSC vary according to tissue and time during ontogeny.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nerve growth cones isolated from fetal rat brain are highly enriched in a 97-kDa glycoprotein, termed beta gc, that comigrates with the beta subunit of the IGF-I receptor upon two-dimensional PAGE and is disulfide-linked to this receptor's alpha subunit. Antibodies prepared to a conserved domain shared by the insulin and IGF-I receptor beta subunits (AbP2) or to beta gc were used to study receptor distribution further. Subcellular fractionation of the fetal brain segregated most AbP2 immunoreactivity away from growth cones, whereas most beta gc immunoreactivity copurified with growth cones. Experiments involving ligand-activated receptor autophosphorylation confirmed the concentration of IGF-I but not of insulin receptors in growth cone fractions. These results indicate the enrichment of IGF-I receptors in (presumably axonal) growth cones of the differentiating neuron. Furthermore, the segregation of beta gc from AbP2 immunoreactivity suggests that such neurons express an immunochemically distinct variant of the IGF-I receptor beta subunit at the growth cone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulmonary neuroendocrine cells are localized predominantly at airway branchpoints. Previous work showed that gastrin-releasing peptide (GRP), a major pulmonary bombesin-like peptide, occurred in neuroendocrine cells exclusively in branching human fetal airways. We now demonstrate that GRP and GRP receptor genes are expressed in fetal mouse lung as early as embryonic day 12 (E12), when lung buds are beginning to branch. By in situ hybridization, GRP receptor transcripts were at highest levels in mesenchymal cells at cleft regions of branching airways and blood vessels. To explore the possibility that bombesin-like peptides might play a role in branching morphogenesis, E12 lung buds were cultured for 48 hr in serum-free medium. In the presence of 0.10-10 microM bombesin, branching was significantly augmented as compared with control cultures, with a peak of 94% above control values at 1 microM (P < 0.005). The bombesin receptor antagonist [Leu13- psi(CH2NH)Leu14]bombesin alone (100 nM) had no effect on baseline branching but completely abolished bombesin-induced branching. A bombesin-related peptide, [Leu8]phyllolitorin also increased branching (65% above control values at 10 nM, P < 0.005). [Leu8]Phyllolitorin also significantly augmented thymidine incorporation in cultured lung buds. Fibronectin, which is abundant at branchpoints, induces GRP gene expression in undifferentiated cell lines. These observations suggest that BLPs secreted by pulmonary neuroendocrine cells may contribute to lung branching morphogenesis. Furthermore, components of branchpoints may induce pulmonary neuroendocrine cell differentiation as part of a positive feedback loop, which could account in part for the high prevalence of these cells at branchpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conclusive evidence was provided that gamma 1, the upstream of the two linked simian gamma-globin loci (5'-gamma 1-gamma 2-3'), is a pseudogene in a major group of New World monkeys. Sequence analysis of PCR-amplified genomic fragments of predicted sizes revealed that all extant genera of the platyrrhine family Atelidae [Lagothrix (woolly monkeys), Brachyteles (woolly spider monkeys), Ateles (spider monkeys), and Alouatta (howler monkeys)] share a large deletion that removed most of exon 2, all of intron 2 and exon 3, and much of the 3' flanking sequence of gamma 1. The fact that two functional gamma-globin genes were not present in early ancestors of the Atelidae (and that gamma 1 was the dispensible gene) suggests that for much or even all of their evolution, platyrrhines have had gamma 2 as the primary fetally expressed gamma-globin gene, in contrast to catarrhines (e.g., humans and chimpanzees) that have gamma 1 as the primary fetally expressed gamma-globin gene. Results from promoter sequences further suggest that all three platyrrhine families (Atelidae, Cebidae, and Pitheciidae) have gamma 2 rather than gamma 1 as their primary fetally expressed gamma-globin gene. The implications of this suggestion were explored in terms of how gene redundancy, regulatory mutations, and distance of each gamma-globin gene from the locus control region were possibly involved in the acquisition and maintenance of fetal, rather than embryonic, expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Odortypes--namely, body odors that distinguish one individual from another on the basis of genetic polymorphism at the major histocompatibility complex and other loci--are a fundamental element in the social life and reproductive behavior of the mouse, including familial imprinting, mate choice, and control of early pregnancy. Odortypes are strongly represented in urine. During mouse pregnancy, an outcrossed mother's urine acquires fetal major histocompatibility complex odortypes of paternal origin, an observation that we took as the focus of a search for odortypes in humans, using a fully automated computer-programmed olfactometer in which trained rats are known to distinguish precisely the odortypes of another species. Five women provided urine samples before and after birth, which in each case appropriately trained rats were found to distinguish in the olfactometer. Whether this olfactory distinction of mothers' urine before and after birth reflects in part the odortype and hence genotype of the fetus, and not just the state of pregnancy per se, was tested in a second study in which each mother's postpartum urine was mixed either with urine from her own infant or with urine of a different, same-aged infant. Responses of trained rats were more positive with respect to the former (congruous) mixtures than to the latter (incongruous) mixtures, implying that, as in the mouse, human fetal odortypes of paternal genomic origin are represented in the odortype of the mother, doubtless by circulatory transfer of the pertinent odorants.