32 resultados para immunotherapy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of using carbohydrate-based vaccines for the immunotherapy of cancer is being actively explored at the present time. Although a number of clinical trials have already been conducted with glycoconjugate vaccines, the optimal design and composition of the vaccines has yet to be determined. Among the candidate antigens being examined is Lewisy (Ley), a blood group-related antigen that is overexpressed on the majority of human carcinomas. Using Ley as a model for specificity, we have examined the role of epitope clustering, carrier structure, and adjuvant on the immunogenicity of Ley conjugates in mice. A glycolipopeptide containing a cluster of three contiguous Ley-serine epitopes and the Pam3Cys immunostimulating moiety was found to be superior to a similar construct containing only one Ley-serine epitope in eliciting antitumor cell antibodies. Because only IgM antibodies were produced by this vaccine, the effect on immunogenicity of coupling the glycopeptide to keyhole limpet hemocyanin was examined; although both IgM and IgG antibodies were formed, the antibodies reacted only with the immunizing structure. Reexamination of the clustered Ley-serine Pam3Cys conjugate with the adjuvant QS-21 resulted in the identification of both IgG and IgM antibodies reacting with tumor cells, thus demonstrating the feasibility of an entirely synthetic carbohydrate-based anticancer vaccine in an animal model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes a tumor-associated antigen, termed CML66, initially cloned from a chronic myelogenous leukemia (CML) cDNA expression library. CML66 encodes a 583-aa protein with a molecular mass of 66 kDa and no significant homology to other known genes. CML66 gene is localized to human chromosome 8q23, but the function of this gene is unknown. CML66 is expressed in leukemias and a variety of solid tumor cell lines. When examined by Northern blot, expression in normal tissues was restricted to testis and heart, and no expression was found in hematopoietic tissues. When examined by quantitative reverse transcription–PCR, expression in CML cells was 1.5-fold higher than in normal peripheral blood mononuclear cells. The presence of CML66-specific antibody in patient serum was confirmed by Western blot and the development of high titer IgG antibody specific for CML66 correlated with immune induced remission of CML in a patient who received infusion of normal donor lymphocytes for treatment of relapse. CML66 antibody also was found in sera from 18–38% of patients with lung cancer, melanoma, and prostate cancer. These findings suggest that CML66 may be immunogenic in a wide variety of malignancies and may be a target for antigen-specific immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p53 protein is an attractive target for immunotherapy, because mutations in the p53 gene are the most common genetic alterations found in human tumors. These mutations result in high levels of p53 protein in the tumor cell, whereas the expression level of wild-type p53 in nonmalignant tissue is usually much lower. Several canarypox virus recombinants expressing human or murine p53 in wild-type or mutant form were constructed. Immunization with these viruses protected BALB/c mice from a challenge with an isogenic and highly tumorigenic mouse fibroblast tumor cell line expressing high levels of mutant p53. The tumor protection was equally effective regardless of whether wild-type or mutant p53 was used for the immunization, indicating that the immunologic response was not dependent on any particular p53 mutation and that immunization with this live virus vaccine works effectively against mutant p53 protein expressed in a tumor cell. In tumors escaping immunologic rejection, the expression of the p53 protein was commonly down-regulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared the antigen-specific antibody isotypes and lymphokine secretion by CD4+ T cells in BALB/c mice immunized intradermally with either Escherichia coli beta-galactosidase (beta-gal) or plasmid DNA (pDNA) encoding beta-gal in a cytomegalovirus-based expression vector (pCMV-LacZ). pCMV-LacZ induced mainly IgG2a, whereas beta-gal in saline or alum induced IgG1 and IgE beta-gal-specific antibodies. In addition, splenic CD4+ T helper (Th) cells isolated from pDNA-immunized mice secreted interferon-gamma but not interleukin (IL)-4 and IL-5, whereas Th cells from beta-gal-injected mice secreted IL-4 and IL-5 but not interferon-gamma after in vitro stimulation with antigen. Together these data demonstrate that pDNA immunization induced a T helper type 1 (Th1) response, whereas protein immunization induced a T helper type 2 (Th2) response to the same antigen. Interestingly, priming of mice with pCMV-LacZ prevented IgE antibody formation to a subsequent i.p. beta-gal in alum injection. This effect was antigen-specific, because priming with pCMV-LacZ did not inhibit IgE anti-ovalbumin antibody formation. Most importantly, intradermal immunization with pCMV-LacZ (but not pCMV-OVA) of beta-gal in alum-primed mice caused a 66-75% reduction of the IgE anti-beta-gal titer in 6 weeks. Also, pCMV-LacZ induced specific IgG2a antibody titers and interferon-gamma secretion by Th cells in the beta-gal in alum-primed mice. The data demonstrate that gene immunization induces a Th1 response that dominates over an ongoing protein-induced Th2 response in an antigen-specific manner. This suggests that immunization with pDNA encoding for allergens may provide a novel type of immunotherapy for allergic diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of chronic hepatitis B virus (HBV) infections with the reverse transcriptase inhibitor lamivudine leads to a rapid decline in plasma viremia and provides estimates for crucial kinetic constants of HBV replication. We find that in persistently infected patients, HBV particles are cleared from the plasma with a half-life of approximately 1.0 day, which implies a 50% daily turnover of the free virus population. Total viral release into the periphery is approximately 10(11) virus particles per day. Although we have no direct measurement of the infected cell mass, we can estimate the turnover rate of these cells in two ways: (i) by comparing the rate of viral production before and after therapy or (ii) from the decline of hepatitis B antigen during treatment. These two independent methods give equivalent results: we find a wide distribution of half-lives for virus-producing cells, ranging from 10 to 100 days in different patients, which may reflect differences in rates of lysis of infected cells by immune responses. Our analysis provides a quantitative understanding of HBV replication dynamics in vivo and has implications for the optimal timing of drug treatment and immunotherapy in chronic HBV infection. This study also represents a comparison for recent findings on the dynamics of human immunodeficiency virus (HIV) infection. The total daily production of plasma virus is, on average, higher in chronic HBV carriers than in HIV-infected patients, but the half-life of virus-producing cells is much shorter in HIV. Most strikingly, there is no indication of drug resistance in HBV-infected patients treated for up to 24 weeks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that interleukin 3 (IL-3) enhances the generation of tumor-specific cytotoxic T lymphocytes (CTLs) through the stimulation of host antigen-presenting cells (APCs). The BALB/c (H-2d) spontaneous lung carcinoma line 1 was modified by gene transfection to express ovalbumin as a nominal "tumor antigen" and to secrete IL-3, a cytokine enhancing myeloid development. IL-3-transfected tumor cells are less tumorigenic than the parental cell line, and tumor-infiltrating lymphocytes isolated from these tumors contain increased numbers of tumor-specific CTLs. By using B3Z86/90.14 (B3Z), a unique T-cell hybridoma system restricted to ovalbumin/H-2b and implanting the tumors in (BALB/c x C57BL/6)F1 (H-2d/b) mice, we demonstrate that the IL-3-transfected tumors contain an increased number of a rare population of host cells that can process and "re-present" tumor antigen to CTLs. Electron microscopy allowed direct visualization of these host APCs, and these studies, along with surface marker phenotyping, indicate that these APCs are macrophage-like. The identification of these cells and their enhancement by IL-3 offers a new opportunity for tumor immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like human gliomas, the rat 9L gliosarcoma secretes the immunosuppressive transforming growth factor beta (TGF-beta). Using the 9L model, we tested our hypothesis that genetic modification of glioma cells to block TGF-beta expression may enhance their immunogenicity and make them more suitable for active tumor immunotherapy. Subcutaneous immunizations of tumor-bearing animals with 9L cells genetically modified to inhibit TGF-beta expression with an antisense plasmid vector resulted in a significantly higher number of animals surviving for 12 weeks (11/11, 100%) compared to immunizations with control vector-modified 9L cells (2/15, 13%) or 9L cells transduced with an interleukin 2 retroviral vector (3/10, 30%) (P < 0.001 for both comparisons). Histologic evaluation of implantation sites 12 weeks after treatment revealed no evidence of residual tumor. In vitro tumor cytotoxicity assays with lymph node effector cells revealed a 3- to 4-fold increase in lytic activity for the animals immunized with TGF-beta antisense-modified tumor cells compared to immunizations with control vector or interleukin 2 gene-modified tumor cells. These results indicate that inhibition of TGF-beta expression significantly enhances tumor-cell immunogenicity and supports future clinical evaluation of TGF-beta antisense gene therapy for TGF-beta-expressing tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aberrant glycosylation of the mucin molecule (encoded by the gene MUC-1) on human epithelial cell tumors leads to the exposure of tumor-associated epitopes recognized by patients' antibodies and cytotoxic T cells. Consequently, these epitopes could be considered targets for immunotherapy. We designed a cellular vaccine, employing, instead of tumor cells, autologous Epstein-Barr virus (EBV)-immortalized B cells as carriers of tumor-associated mucin, to take advantage of their costimulatory molecules for T-cell activation. The vaccine was tested in chimpanzees because of the identity of the human and chimpanzee MUC-1 tandem repeat sequence. EBV-immortalized B cells derived from two chimpanzees were transfected with MUC-1 cDNA, treated with glycosylation inhibitor phenyl-N-acetyl-alpha-D-galactosaminide to expose tumor-associated epitopes, irradiated, and injected subcutaneously four times at 3-week intervals. One vaccine preparation also contained cells transduced with the interleukin 2 (IL-2) cDNA and producing low levels of IL-2. Already after the first injection we found in the peripheral blood measurable frequency of cytotoxic T-cell precursors specific for underglycosylated mucin. The highest frequency observed was after the last boost, in the lymph node draining the vaccination site. Delayed-type hypersensitivity reaction to the injected immunogens was also induced, whereas no appearance of mucin-specific antibodies was seen. Long-term observation of the animals yielded no signs of adverse effects of this immunization. Autologous antigen-presenting cells, like EBV-immortalized B cells, expressing tumor-associated antigens are potentially useful immunogens for induction of cellular anti-tumor responses in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacille Calmette-Guérin (BCG) is a live, attenuated strain of Mycobacterium bovis used widely for tuberculosis prophylaxis and bladder cancer immunotherapy, although it has limitations in both contexts. To investigate whether BCG's immunostimulatory properties could be modified, and to gain insight into the interaction between mycobacteria and their hosts, we constructed recombinant BCG strains that secrete functional murine cytokines and studied their properties in mouse models of experimental infection. Cell-mediated immune responses to mycobacterial antigen (purified protein derivative) were assayed using splenocytes from mice inoculated with various BCG recombinants. Antigen-specific proliferation and cytokine release were found to be substantially greater with splenocytes derived from mice injected with cytokine-secreting BCG than with splenocytes from mice injected with BCG lacking cytokines. The most profound effects were induced by BCG secreting interleukin 2, interferon gamma, or granulocyte-macrophage colony-stimulating factor. Thus, cytokine-secreting BCG can enhance immune responses to mycobacterial antigens and may be improved reagents for tuberculosis prophylaxis and cancer immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major barrier to the design of immunotherapeutics and vaccines for cancer is the idiosyncratic nature of many tumor antigens and the possibility that T cells may be tolerant of broadly distributed antigens. We have devised an experimental strategy that exploits species differences in protein sequences to circumvent tolerance of high-affinity T cells. HLA transgenic mice were used to obtain cytotoxic T lymphocytes specific for peptides from the human p53 tumor-suppressor molecule presented in association with HLA-A2.1. Although such p53-specific cytotoxic T cells did not recognize nontransformed human cells, they were able to lyse a wide variety of human tumor cells lines, thus confirming the existence of broadly distributed determinants that may serve as targets for immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlytic suppression of human immunodeficiency virus (HIV) production from infected CD4+ T cells by CD8+ lymphocytes from HIV-infected individuals is one of the most potent host-mediated antiviral activities observed in vitro. We demonstrate that the pleiotropic cytokine interleukin 2 (IL-2), but not IL-12, is a potent inducer of the CD8+ HIV suppressor phenomenon. IL-2 induces HIV expression in peripheral blood or lymph node mononuclear cells from HIV-infected individuals in the absence of CD8+ T cells. However, IL-2 induces CD8+ T cells to suppress HIV expression when added back to these cultures, and this effect dramatically supersedes the ability to IL-2 to induce HIV expression. Five to 25 times fewer CD8+ cells were required to obtain comparable levels of inhibition of viral production if they were activated in the presence of IL-2 as compared with IL-12 or no exogenous cytokine. Furthermore, IL-2 appeared either to induce a qualitative increase in HIV suppressor cell activity or to increase the relative frequency of suppressor cells in the activated (CD25+) CD8+ populations. Analyses of proviral levels in peripheral blood mononuclear cells suggest that CD8+ T cell-mediated lysis of in vivo infected cells is not induced by IL-2. These results have implications for our understanding of the effects of impaired IL-2 production during HIV disease as well as the overall effects of IL-2-based immunotherapy on HIV replication in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recruitment of antigen-specific tumor-infiltrating lymphocytes (TILs) is a major goal for immunotherapy of malignant tumours. We now describe that T-cell-activating superantigens targeted to a tumor by monoclonal antibodies induced large numbers of pseudospecific TILs and eradication of micrometastases. As a model for tumor micrometastases, syngeneic B16 melanoma cells transfected with the human colon carcinoma antigen C215 were injected intravenously into C57BL/6 mice and therapy with an anti-C215 Fab fragment-staphylococcal enterotoxin A (C215Fab-SEA) fusion protein reacting with the C215 antigen was initiated when visible lung metastases were established. More than 90% reduction of the number of lung metastases was observed when mice carrying 5-day-old established lung metastases were treated with C215Fab-SEA. The antitumor effect of C215Fab-SEA was shown to be T-cell-dependent since no therapeutic effect was seen in T-cell-deficient nude mice. Depletion of T-cell subsets by injection of monoclonal antibody demonstrated that CD8+ cells were the most prominent effector cells although some contribution from CD4+ cells was also noted. C215Fab-SEA treatment induced massive tumor infiltration of CD4+ and CD8+ T cells, while only scattered T cells were observed in untreated tumors. SEA treatment alone induced a slight general inflammatory response in the lung parenchyme, but no specific accumulation of T cells was seen in the tumor. TILs induced by C215Fab-SEA were mainly CD8+ but a substantial number of CD4+ cells were also present. Immunohistochemical analysis showed strong production of the tumoricidal cytokines tumor necrosis factor alpha and interferon gamma in the tumor. Thus, the C215Fab-SEA fusion protein targets effector T lymphocytes to established tumors in vivo and provokes a strong local antitumor immune response.