21 resultados para Invasion
Resumo:
Prostate carcinoma is the second leading cause of death from malignancy in men in the United States. Prostate cancer cells express type I insulin-like growth factor receptor (IGF-IR) and prostate cancer selectively metastazises to bone, which is an environment rich in insulin-like growth factors (IGFs), thereby supporting a paracrine action for cancer cell proliferation. We asked whether the IGF-IR is coupled to tumorigenicity and invasion of prostate cancer. When rat prostate adenocarcinoma cells (PA-III) were stably transfected with an antisense IGF-IR expression construct containing the ZnSO4-inducible metallothionein-1 transcriptional promoter, the transfectants expressed high levels of IGF-IR antisense RNA after induction with ZnSO4, which resulted in dramatically reduced levels of endogenous IGF-IR mRNA. A significant reduction in expression both of tissue-type plasminogen activator and of urokinase-type plasminogen activator occurred in PA-III cells accompanying inhibition of IGF-IR. Subcutaneous injection of either nontransfected PA-III or PA-III cells transfected with vector minus the IGF-IR insert into nude mice resulted in large tumors after 4 weeks. However, mice injected with IGF-IR antisense-transfected PA-III cells either developed tumors 90% smaller than controls or remained tumor-free after 60 days of observation. When control-transfected PA-III cells were inoculated over the abraded calvaria of nude mice, large tumors formed with invasion of tumor cells into the brain parenchyma. In contrast, IGF-IR antisense transfectants formed significantly smaller tumors with no infiltration into brain. These results indicate an important role for the IGF/IGF-IR pathway in metastasis and provide a basis for targeting IGF-IR as a potential treatment for prostate cancer.
Resumo:
Macrophages secrete a variety of proteinases that are thought to participate in remodeling of the extracellular matrix associated with inflammatory processes. We have eliminated expression of the macrophage metalloelastase (MME) gene by targeted disruption to assess the role of this protein in macrophage-mediated proteolysis. We found that the macrophages of MME-deficient (MME-/-) mice have a markedly diminished capacity to degrade extracellular matrix components. In addition, MME-/- macrophages are essentially unable to penetrate reconstituted basement membranes in vitro and in vivo. MME is therefore required for macrophage-mediated extracellular matrix proteolysis and tissue invasion.
Resumo:
For 21 strains of Salmonella enterica, nucleotide sequences were obtained for three invasion genes, spaO, spaP, and spaQ, of the chromosomal inv/spa complex, the products of which form a protein export system required for entry of the bacteria into nonphagocytic host cells. These genes are present in all eight subspecies of the salmonellae, and homologues occur in a variety of other bacteria, including the enteric pathogens Shigella and Yersinia, in which they are plasmid borne. Evolutionary diversification of the invasion genes among the subspecies of S. enterica has been generally similar in pattern and average rate to that of housekeeping genes. However, the range of variation in evolutionary rate among the invasion genes is unusually large, and there is a relationship between the evolutionary rate and cellular location of the invasion proteins, possibly reflecting diversifying selection on exported proteins in adaptation to variable host factors in extracellular environments. The SpaO protein, which is hypervariable in S. enterica and exhibits only 24% sequence identity with its homologues in Shigella and Yersinia, is secreted. In contrast, the membrane-associated proteins SpaP, SpaQ, and InvA are weakly polymorphic and have > 60% sequence identity with the corresponding proteins of other enteric bacteria. Acquisition of the inv/spa genes may have been a key event in the evolution of the salmonellae as pathogens, following which the invention of flagellar phase shifting facilitated niche expansion to include warm-blooded vertebrates.
Resumo:
E-Cadherin, a cell adhesion molecule, which plays a key role in maintaining the epithelial phenotype, is regarded as an invasion-suppressor gene in light of accumulating evidence from in vitro experiments and clinical observations. In an attempt to clarify the mechanism responsible for inactivation of this gene in carcinomas, we investigated the methylation state around the promoter region by digestion of DNA with the methylation-sensitive restriction enzyme Hpa II, as CpG methylation of the promoter has been postulated to be a mechanism of transcriptional inactivation of some genes. We found that E-cadherin expression-negative carcinoma cell lines were accompanied by the hypermethylation state, whereas E-cadherin-positive cell lines were not. Furthermore, treatment of E-cadherin-negative carcinoma cells with the demethylating agent 5-azacytidine resulted in reexpression of the gene and reversion of scattered spindle-shaped cells to cells with epithelial morphology. These results suggest that hypermethylation around the promoter may be a mechanism of E-cadherin inactivation in human carcinomas and that treatment of E-cadherin-inactivated cells with a demethylating agent may cause gene expression reversion leading to epithelial morphogenesis with acquisition of the homophilic cell-cell adhesive property.
Resumo:
Secretion of IpaB, IpaC, and IpaD proteins of Shigella flexneri, essential for the invasion of epithelial cells, requires a number of proteins encoded by the spa and mxi loci on the large plasmid. Introduction of dsbA::Tn5 into S.flexneri from Escherichia coli K-12 reduced invasiveness, which resulted from a decrease in the capacity to release IpaB, IpaC, and IpaD proteins into the external medium. Examination of the surface-presented Ipa proteins of the dsbA mutant, however, revealed Ipa proteins at levels similar to those on wild-type cells. Since the defective phenotype was similar to that of the spa32 mutant of S. flexneri and the Spa32 sequence possessed two Cys residues, the effect of dsbA mutation of the folding structure of Spa32 under reducing conditions and on the surface expression of Spa32 was investigated. The results indicated that Spa32 was a disulfide-containing protein whose correctly folded structure was required for its presentation on the outer membrane. Indeed, replacing either one of the two Cys residues in Spa32 with Ser by site-directed mutagenesis reduced its capacity to release Ipa proteins into the external medium and led to the accumulation of Spa32 protein in the periplasm. These results indicated that the DsbA protein performs an essential function during the invasion of mammalian cells, by facilitating transport of the Spa32 protein across the outer membrane.
Resumo:
Irregularities in observed population densities have traditionally been attributed to discretization of the underlying dynamics. We propose an alternative explanation by demonstrating the evolution of spatiotemporal chaos in reaction-diffusion models for predator-prey interactions. The chaos is generated naturally in the wake of invasive waves of predators. We discuss in detail the mechanism by which the chaos is generated. By considering a mathematical caricature of the predator-prey models, we go on to explain the dynamical origin of the irregular behavior and to justify our assertion that the behavior we present is a genuine example of spatiotemporal chaos.