259 resultados para protein tyrosine kinase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

c-Mpl, a member of the hematopoietic cytokine receptor family, is the receptor for thrombopoietin. To investigate signal transduction by c-Mpl, a chimeric receptor, composed of the extracellular domain of human growth hormone receptor and the intracellular domain of c-Mpl, was introduced into the interleukin 3-dependent cell line Ba/F3. In response to growth hormone, this chimeric receptor induced growth in the absence of interleukin 3. Deletion analysis of the 123-amino acid intracellular domain indicated that the elements responsible for this effect are present within the 63 amino acids proximal to the transmembrane domain. Mutation of the recently described box 1 motif abrogated the proliferative response. Tyrosine phosphorylation of the tyrosine kinase JAK-2 and activation of STAT proteins were dependent on box 1 and sequences within 63 amino acids of the plasma membrane. STAT proteins activated by thrombopoietin in a megakaryocytic cell line were purified and shown to be STAT1 and STAT3. A separate region located at the C terminus of the c-Mpl intracellular domain was found to be required for induction of Shc phosphorylation and c-fos mRNA accumulation, suggesting involvement of the Ras signal transduction pathway. Thus, at least two distinct regions are involved in signal transduction by the c-Mpl.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The T-cell antigen receptor zeta chain plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways. zeta chain can associate with certain protein tyrosine kinases and retains the capacity to transduce signals independently of the other receptor subunits. Thus, zeta chain could couple cell-surface-expressed T-cell antigen receptors to the intracellular signal-transduction apparatus by its association with various intracellular molecules in addition to tyrosine kinases. In the process of searching for zeta chain-associated molecules we observed that after lysis of resting T cells with Triton X-100, zeta chain is localized in the detergent-insoluble fraction, in addition to its presence in the detergent-soluble fraction. Treatment of T cells with cytochalasin B, an actin-depolymerizing agent, leads to the complete dissociation of zeta chain from the Triton-insoluble fraction, suggesting a linkage between zeta chain and the cytoskeletal matrix. We have also determined that cytoskeletal-associated zeta chain is expressed on the cell surface. Furthermore, a tyrosine-phosphorylated 16-kDa zeta chain was detected only in the Triton-insoluble cytoskeletal fraction of resting T cells. zeta chain also maintains its association with the cytoskeleton when expressed in COS cells, inferring that the cytoskeletal elements involved in this linkage may be ubiquitous. Finally, we have localized a 42-amino acid region in the intracytoplasmic domain of zeta chain, which is crucial for maximal interaction between zeta chain and the cytoskeleton. Anchorage of cell-surface-expressed zeta chain to the cytoskeleton in resting T cells may facilitate recycling of receptor complexes and/or allow the transduction of external stimuli into the cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chromosomal rearrangements involving band 12p13 are found in a wide variety of human leukemias but are particularly common in childhood acute lymphoblastic leukemia. The genes involved in these rearrangements, however, have not been identified. We now report the cloning of a t(12;21) translocation breakpoint involving 12p13 and 21q22 in two cases of childhood pre-B acute lymphoblastic leukemia, in which t(12;21) rearrangements were not initially apparent. The consequence of the translocation is fusion of the helix-loop-helix domain of TEL, an ETS-like putative transcription factor, to the DNA-binding and transactivation domains of the transcription factor AML1. These data show that TEL, previously shown to be fused to the platelet-derived growth factor receptor beta in chronic myelomonocytic leukemia, can be implicated in the pathogenesis of leukemia through its fusion to either a receptor tyrosine kinase or a transcription factor. The TEL-AML1 fusion also indicates that translocations affecting the AML1 gene can be associated with lymphoid, as well as myeloid, malignancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human T-cell leukemia virus type I (HTLV-I) gives rise to a neurologic disease known as HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the pathogenesis of the disease is unknown, the presence of a remarkably high frequency of Tax-specific, cytotoxic CD8 T cells may suggest a role of these cells in the development of HAM/TSP. Antigen-mediated signaling in a CD8 T-cell clone specific for the Tax(11-19) peptide of HTLV-I was studied using analog peptides substituted in their T-cell receptor contact residues defined by x-ray crystallographic data of the Tax(11-19) peptide in the groove of HLA-A2. CD8 T-cell stimulation with the wild-type peptide antigen led to activation of p56lck kinase activity, interleukin 2 secretion, cytotoxicity, and clonal expansion. A Tax analog peptide with an alanine substitution of the T-cell receptor contact residue tyrosine-15 induced T-cell-mediated cytolysis without activation of interleukin 2 secretion or proliferation. Induction of p56lck kinase activity correlated with T-cell-mediated cytotoxicity, whereas interleukin 2 secretion correlated with [3H]thymidine incorporation and proliferation. Moreover, Tax peptide analogs that activated the tyrosine kinase activity of p56lck could induce unresponsiveness to secondary stimulation with the wild-type peptide. These observations show that a single amino acid substitution in a T-cell receptor contact residue of Tax can differentially signal CD8 T cells and further demonstrate that primary activation has functional consequences for the secondary response of at least some Tax-specific CD8 T cells to HTLV-I-infected target cells.