149 resultados para Nuclear Proteins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have designed a rapid cloning and screening strategy to identify new members of the nuclear hormone receptor superfamily that are expressed during the onset of Drosophila metamorphosis. Using this approach, we isolated three Drosophila genes, designated DHR38, DHR78, and DHR96. All three genes are expressed throughout third-instar larval and prepupal development. DHR38 is the Drosophila homolog of NGFI-B and binds specifically to an NGFI-B response element. DHR78 and DHR96 are orphan receptor genes. DHR78 is induced by 20-hydroxyecdysone (20E) in cultured larval organs, and its encoded protein binds to two AGGTCA half-sites arranged as either direct or palindromic repeats. DHR96 is also 20E-inducible, and its encoded protein binds selectively to the hsp27 20E response element. The 20E receptor can bind to each of the sequences recognized by DHR78 and DHR96, indicating that these proteins may compete with the receptor for binding to a common set of target sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA conformational changes are essential for the assembly of multiprotein complexes that contact several DNA sequence elements. An approach based on atomic force microscopy was chosen to visualize specific protein-DNA interactions occurring on eukaryotic class II nuclear gene promoters. Here we report that binding of the transcription regulatory protein Jun to linearized plasmid DNA containing the consensus AP-1 binding site upstream of a class II gene promoter leads to bending of the DNA template. This binding of Jun was found to be essential for the formation of preinitiation complexes (PICs). The cooperative binding of Jun and PIC led to looping of DNA at the protein binding sites. These loops were not seen in the absence of either PICs, Jun, or the AP-1 binding site, suggesting a direct interaction between DNA-bound Jun homodimers and proteins bound to the core promoter. This direct visualization of functional transcriptional complexes confirms the theoretical predictions for the mode of gene regulation by trans-activating proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappa B) is a transcription factor regulating expression of genes intrinsic to inflammation and cell proliferation--features of asbestos-associated diseases. In studies here, crocidolite asbestos caused protracted and dose-responsive increases in proteins binding to nuclear NF-kappa B-binding DNA elements in hamster tracheal epithelial (HTE) cells. This binding was modulated by cellular glutathione levels. Antibodies recognizing p65 and p50 protein members of the NF-kappa B family revealed these proteins in two of the DNA complexes. Transient transfection assays with a construct containing six NF-kappa B-binding DNA consensus sites linked to a luciferase reporter gene indicated that asbestos induced transcriptional activation of NF-kappa B-dependent genes, an observation that was confirmed by northern blot analyses for c-myc mRNA levels in HTE cells. Studies suggest that NF-kappa B induction by asbestos is a key event in regulation of multiple genes involved in the pathogenesis of asbestos-related lung cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear import system is highly conserved among eukaryotes. Here we report the effects of a conditional mutation in SRP1, which encodes a Saccharomyces cerevisiae homolog of the vertebrate nuclear import receptor importin. Importin was isolated as a factor required for the initial targeting step of a nuclear import substrate to the nuclear envelope in a mammalian in vitro assay. We show that yeast Srp1 is similarly required for protein import. In addition, Srp1 is also required for the execution of mitosis: we demonstrate that cells containing a conditional mutation of SRP1 arrest with a G2/M phenotype in a manner analogous to classic cdc mutants. This defect may be due to the failure of the mutant to degrade the mitotic cyclin Clb2 and other proteins required for mitosis. The requirement of a nuclear import receptor for cell cycle-regulated proteolysis implies that import of cell cycle regulators into the nucleus is critical for cell cycle progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Drosophila the response to the hormone ecdysone is mediated in part by Ultraspiracle (USP) and ecdysone receptor (EcR), which are members of the nuclear receptor superfamily. Heterodimers of these proteins bind to ecdysone response elements (EcREs) and ecdysone to modulate transcription. Herein we describe Drosophila hormone receptor 38 (DHR38) and Bombyx hormone receptor 38 (BHR38), two insect homologues of rat nerve growth factor-induced protein B (NGFI-B). Although members of the NGFI-B family are thought to function exclusively as monomers, we show that DHR38 and BHR38 in fact interact strongly with USP and that this interaction is evolutionarily conserved. DHR38 can compete in vitro against EcR for dimerization with USP and consequently disrupt EcR-USP binding to an EcRE. Moreover, transfection experiments in Schneider cells show that DHR38 can affect ecdysone-dependent transcription. This suggests that DHR38 plays a role in the ecdysone response and that more generally NGFI-B type receptors may be able to function as heterodimers with retinoid X receptor type receptors in regulating transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of export of RNA from the nucleus are poorly understood; however, several viral proteins modulate nucleocytoplasmic transport of mRNA. Among these are the adenoviral proteins E1B-55kDa and E4-34kDa. Late in infection, these proteins inhibit export of host transcripts and promote export of viral mRNA. To investigate the mechanism by which these proteins act, we have expressed them in Saccharomyces cerevisiae. Overexpression of either or both proteins has no obvious effect on cell growth. By contrast, overexpression of E1B-55kDa bearing a nuclear localization signal (NLS) dramatically inhibits cell growth. In this situation, the NLS-E1B-55kDa protein is localized to the nuclear periphery, fibrous material is seen in the nucleoplasm, and poly(A)+ RNA accumulates in the nucleus. Simultaneous overexpression of E4-34kDa bearing or lacking an NLS does not modify these effects. We discuss the mechanisms of selective mRNA transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although only 44% identical to human karyopherin alpha 1, human karyopherin alpha 2 (Rch1 protein) substituted for human karyopherin alpha 1 (hSRP-1/NPI-1) in recognizing a standard nuclear localization sequence and karyopherin beta-dependent targeting to the nuclear envelope of digitonin-permeabilized cells. By immunofluorescence microscopy of methanol-fixed cells, karyopherin beta was localized to the cytoplasm and the nuclear envelope and was absent from the nuclear interior. Digitonin permeabilization of buffalo rat liver cells depleted their endogenous karyopherin beta. Recombinant karyopherin beta can bind directly to the nuclear envelope of digitonin-permeabilized cells at 0 degree C (docking reaction). In contrast, recombinant karyopherin alpha 1 or alpha 2 did not bind unless karyopherin beta was present. Likewise, in an import reaction (at 20 degrees C) with all recombinant transport factors (karyopherin alpha 1 or alpha 2, karyopherin beta, Ran, and p10) import depended on karyopherin beta. Localization of the exogenously added transport factors after a 30-min import reaction showed karyopherin beta at the nuclear envelope and karyopherin alpha 1 or alpha 2, Ran, and p10 in the nuclear interior. In an overlay assay with SDS/PAGE-resolved and nitrocellulose-transferred proteins of the nuclear envelope, 35S-labeled karyopherin beta bound to at least four peptide repeat-containing nucleoporins--Nup358, Nup214, Nup153, and Nup98.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified a class of proteins that bind single-stranded telomeric DNA and are required for the nuclear organization of telomeres and/or telomere-associated proteins. Rlf6p was identified by its sequence similarity to Gbp1p, a single-stranded telomeric DNA-binding protein from Chlamydomonas reinhardtii. Rlf6p and Gbp1p bind yeast single-stranded G-strand telomeric DNA. Both proteins include at least two RNA recognition motifs, which are found in many proteins that interact with single-stranded nucleic acids. Disruption of RLF6 alters the distribution of repressor/activator protein 1 (Rap1p), a telomere-associated protein. In wild-type yeast cells, Rap1p localizes to a small number of perinuclear spots, while in rlf6 cells Rap1p appears diffuse and nuclear. Interestingly, telomere position effect and telomere length control, which require RAP1, are unaffected by rlf6 mutations, demonstrating that Rap1p localization can be uncoupled from other Rap1p-dependent telomere functions. In addition, expression of Chlamydomonas GBP1 restores perinuclear, punctate Rap1p localization in rlf6 mutant cells. The functional complementation of a fungal gene by an algal gene suggests that Rlf6p and Gbp1p are members of a conserved class of single-stranded telomeric DNA-binding proteins that influence nuclear organization. Furthermore, it demonstrates that, despite their unusual codon bias, C. reinhardtii genes can be efficiently translated in Saccharomyces cerevisiae cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein farnesyltransferase catalyzes the alkylation of cysteine in C-terminal CaaX sequences of a variety of proteins, including Ras, nuclear lamins, large G proteins, and phosphodiesterases, by farnesyl diphosphate (FPP). These modifications enhance the ability of the proteins to associate with membranes and are essential for their respective functions. The enzyme-catalyzed reaction was studied by using a series of substrate analogs for FPP to distinguish between electrophilic and nucleophilic mechanisms for prenyl transfer. FPP analogs containing hydrogen, fluoromethyl, and trifluoromethyl substituents in place of the methyl at carbon 3 were evaluated as alternative substrates for alkylation of the sulfhydryl moiety in the peptide dansyl-GCVIA. The analogs were alternative substrates for the prenylation reaction and were competitive inhibitors against FPP. A comparison of kcat for FPP and the analogs with ksolv, the rate constants for solvolysis of related p-methoxybenzenesulfonate derivatives, indicated that protein prenylation occurred by an electrophilic mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraperitoneal injection of epidermal growth factor into mice results in the appearance of multiple tyrosine-phosphorylated proteins in liver nuclei within minutes after administration. We have previously identified three of these proteins as Stat 1 alpha, Stat 1 beta (p91, p84), and Stat 3 (p89). In the present report we demonstrate that Stat 5 (p92), the recently described prolactin inducible transcription factor detected in mammary glands, is the major tyrosine-phosphorylated protein translocated to the nucleus in mouse liver in response to epidermal growth factor. Furthermore, gel-shift analysis and affinity purification revealed that Stat 5, Stat 1 alpha, and Stat 1 beta specifically bind to the prolactin inducible element upstream of the beta-casein promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the winged helix/forkhead family of transcription factors are believed to play a role in cell-specific gene expression. A cDNA encoding a member of this family of proteins, termed hepatocyte nuclear factor/forkhead homologue 4 (HFH-4), has been isolated from rat lung and rat testis cDNA libraries. This cDNA contains an open reading frame of 421 amino acids with a conserved DNA binding domain and several potential transactivating regions. During murine lung development, a single species of HFH-4-specific transcript (2.4 kb long) is first detected precisely at the start of the late pseudoglandular stage (embryonic day 14.5) and, by in situ hybridization, is specifically localized to the proximal pulmonary epithelium. The unique temporal and spatial pattern of HFH-4 gene expression in the developing lung defines this protein as a marker for the initiation of bronchial epithelial cell differentiation and suggests that it may play an important role in cell fate determination during lung development. In addition to expression in the pulmonary epithelium, RNA blot analysis reveals 2.4-kb HFH-4 transcripts in the testis and oviduct. By using mice with genetic defects in spermatogenesis, HFH-4 expression in the testis is found to be associated with the appearance of haploid germ cells and in situ hybridization studies indicate that HFH-4 expression is confined to stages I-VII of spermatogenesis. This pattern of HFH-4 gene expression during the early stages of differentiation of haploid germ cells suggests that HFH-4 may play a role in regulating stage-specific gene expression and cell-fate determination during lung development and in spermatogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EBNA 2 (Epstein-Barr virus nuclear antigen 2) is an acidic transactivator essential for EBV transformation of B lymphocytes. We show that EBNA 2 directly interacts with general transcription factor IIH. Glutathione S-transferase (GST)-EBNA 2 acidic domain fusion protein depleted transcription factor IIH activity from a TFIIH nuclear fraction. The p89 (ERCC3), p80 (ERCC2), and p62 subunits of TFIIH were among the proteins retained by GST-EBNA 2. Eluates from the GST-EBNA 2 beads reconstituted activity in a TFIIH-dependent in vitro transcription assay. The p62 and p80 subunits of TFIIH independently bound to GST-EBNA 2, whereas the p34 subunit of TFIIH only bound in the presence of p62. A Trp-->Thr mutation in the EBNA 2 acidic domain abolishes EBNA 2 transactivation in vivo and greatly compromised EBNA 2 association with TFIIH activity and with the p62 and p80 subunits, providing a link between EBNA 2 transactivation and these interactions. Antibodies directed against the p62 subunit of TFIIH coimmunoprecipitated EBNA 2 from EBV-transformed B lymphocytes, indicating that EBNA 2 associates with TFIIH in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is involved in trafficking of lymphocytes to mucosal endothelium. Expression of MAdCAM-1 is induced in the murine endothelial cell line bEnd.3 by tumor necrosis factor alpha (TNF-alpha), interleukin 1, and bacterial lipopolysaccharide. Here we show that TNF-alpha enhances expression of a firefly luciferase reporter directed by the MAdCAM-1 promoter, confirming transcriptional regulation of MAdCAM-1. Mutational analysis of the promoter indicates that a DNA fragment extending from nt -132 to nt +6 of the gene is sufficient for TNF-alpha inducibility. Two regulatory sites critical for TNF-alpha induction were identified in this region. DNA-binding experiments demonstrate that NF-kappa B proteins from nuclear extracts of TNF-alpha-stimulated bEnd.3 cells bind to these sites, and transfection assays with promoter mutants of the MAdCAM-1 gene indicate that occupancy of both sites is essential for promoter function. The predominant NF-kappa B binding activity detected with these nuclear extracts is a p65 homodimer. These findings establish that, as with other endothelial cell adhesion molecules, transcriptional induction of MAdCAM-1 by TNF-alpha requires activated NF-kappa B proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CDC47 gene was isolated by complementation of a cdc47 temperature-sensitive mutant in Saccharomyces cerevisiae and was shown to encode a predicted polypeptide, Cdc47, of 845 aa. Cdc47 belongs to the Cdc46/Mcm family of proteins, previously shown to be essential for initiation of DNA replication. Using indirect immunofluorescence microscopy and subcellular fractionation techniques, we show that Cdc47 undergoes cell cycle-regulated changes in its subcellular localization. At mitosis, Cdc47 enters the nucleus, where it remains until soon after the initiation of DNA replication, when it is rapidly exported back into the cytoplasm. Cdc47 protein levels do not vary with the cell cycle, but expression of CDC47 and nascent synthesis of Cdc47 occur late in the cell cycle, coinciding with mitosis. Together, these results show that Cdc47 is not only imported into the nucleus at the end of mitosis but is also exported back into the cytoplasm at the beginning of S phase. The observation that Cdc47 is exported from the nucleus at the beginning of S phase has important implications for how initiation of DNA replication is controlled.