3 resultados para recombinant protein

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The incidence of Amaranthaceae pollen allergy has increased due to the desertification occurring in many countries. In some regions of Spain, Salsola kali is the main cause of pollinosis, at almost the same level as olive and grass pollen. Sal k 1 - the sensitization marker of S. kali pollinosis - is used in clinical diagnosis, but is purified at a low yield from pollen. We aimed to produce a recombinant (r)Sal k 1 able to span the structural and immunological properties of the natural isoforms from pollen, and validate its potential use for diagnosis. METHODS: Specific cDNA was amplified by PCR, cloned into the pET41b vector and used to transform BL21 (DE3) Escherichia coli cells. Immunoblotting, ELISA, basophil activation and skin-prick tests were used to validate the recombinant protein against Sal k 1 isolated from pollen. Sera and blood cells from S. kali pollen-sensitized patients and specific monoclonal and polyclonal antisera were used. RESULTS: rSal k 1 was produced in bacteria with a yield of 7.5 mg/l of cell culture. The protein was purified to homogeneity and structural and immunologically validated against the natural form. rSal k 1 exhibited a higher IgE cross-reactivity with plant-derived food extracts such as peanut, almond or tomato than with pollen sources such as Platanus acerifolia and Oleaceae members. CONCLUSIONS: rSal k 1 expressed in bacteria retains intact structural and immunological properties in comparison to the pollen-derived allergen. It spans the immunological properties of most of the isoforms found in pollen, and it might substitute natural Sal k 1 in clinical diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37°C to 50°C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4°C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree nut allergies are considered an important health issue in developed countries. To comply with the regulations on food labeling, reliable allergen detection methods are required. In this work we isolated almond-specific recombinant antibody fragments (scFv) from a commercial phage display library bypassing the use of live animals, hence being consistent with the latest policies on animal welfare. To this end an iterative selection procedure employing the Tomlinson I phage display library and a crude almond protein extract was carried out. Two different almond-specific scFv (named PD1F6 and PD2C9) were isolated after two rounds of biopanning, and an indirect phage ELISA was implemented to detect the presence of almond protein in foodstuffs. The isolated scFvs demonstrated to be highly specific and allowed detection of 40 ng mL?1 and 100 ng mL?1 of raw and roasted almond protein, respectively. The practical detection limit of the assay in almond spiked food products was 0.1 mg g?1 (110e120 ppm). The developed indirect phage ELISA was validated by analysis of 92 commercial food products, showing good correlation with the results obtained by a previously developed real-time PCR method for the detection of almond in foodstuffs. The selected phage clones can be affinity maturated to improve their sensitivity and genetically engineered to be employed in different assay formats.