9 resultados para monoterpenoid indole alkaloid
em Universidad Politécnica de Madrid
Resumo:
An HPLC/GC–MS/MS technique (high-pressure liquid chromatography in combination with gas chromatography–tandem mass spectrometry) has been worked out to analyze indole-3-acetamide (IAM) with very high sensitivity, using isotopically labelled IAM as an internal standard. Using this technique, the occurrence of IAM in sterile-grown Arabidopsis thaliana (L.) Heynh. was demonstrated unequivocally. In comparison, plants grown under non-sterile conditions in soil in a greenhouse showed approximately 50% higher average levels of IAM, but the differences were not statistically significant. Thus, microbial contributions to the IAM extracted from the tissue are likely to be minor. Levels of IAM in sterile-grown seedlings were highest in imbibed seeds and then sharply declined during the first 24 h of germination and further during early seedling development to remain below 20–30 pmol g–1 fresh weight throughout the rosette stage. The decline in indole-3-aetic acid (IAA) levels during germination was paralleled by a similar decline in IAM levels. Recombinant nitrilase isoforms 1, 2 and 3, known to synthesize IAA from indole-3-acetonitrile, were shown to produce significant amounts of IAM in vitro as a second end product of the reaction besides IAA. NIT2 was earlier shown to be highly expressed in developing and in mature A. thaliana embryos, and NIT3 is the dominantly active gene in the hypocotyl and the cotyledons of young, germinating seedlings. Collectively, these data suggest that the elevated levels of IAM in seeds and germinating seedlings result from nitrilase action on indole-3-acetonitrile, a metabolite produced in the plants presumably from glucobrassicin turnover.
Resumo:
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against l-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.
Resumo:
To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also investigated. Analysis of initial spatial IAA distribution in the cuttings revealed that approximately 40 and 10% of the total IAA pool was present in the leaves and the stem base as rooting zone, respectively. A negative correlation existed between leaf size and IAA concentration. After excision of cuttings, IAA showed an early increase in the stem base with two peaks at 2 and 24h post excision and, thereafter, a decline to low levels. This was mirrored by the expression pattern of the auxin-responsive GH3 gene. NPA treatment completely suppressed the 24-h peak of IAA and severely inhibited root formation. It also reduced activities of cell wall and vacuolar invertases in the early phase of AR formation and inhibited the rise of activities of glucose-6-phosphate dehydrogenase and phosphofructokinase during later stages. We propose a model in which spontaneous AR formation in Petunia cuttings is dependent on PAT and on the resulting 24-h peak of IAA in the rooting zone, where it induces early cellular events and also stimulates sink establishment. Subsequent root development stimulates glycolysis and the pentosephosphate pathway
Resumo:
The initial reaction in the pathway leading to the production of indole-3-acetic acid (IAA) in plants is the reaction between chorismate and glutamine to produce anthranilate, catalysed by the enzyme anthranilate synthase (ASA; EC 4.1.3.27). Compared with non-transgenic controls, leaves of transgenic poplar with ectopic expression of the pine cytosolic glutamine synthetase (GS1a; EC 6.3.1.2) produced significantly greater glutamine and significantly enhanced ASA a-subunit (ASA1) transcript and protein (approximately 130% and 120% higher than in the untransformed controls, respectively). Similarly, tobacco leaves fed with 30 mM glutamine and 2 mM chorismate showed enhanced ASA1 transcript and protein (175% and 90% higher than controls, respectively). Furthermore, free IAA was significantly elevated both in leaves of GS1a transgenic poplar and in tobacco leaves fed with 30 mM glutamine and 2 mM chorismate. These results indicated that enhanced cellular glutamine may account for the enhanced growth in GS transgenic poplars through the regulation of auxin biosynthesis
Resumo:
Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing.
Resumo:
Amidase 1 (AMI1) from Arabidopsis thaliana converts indole-3-acetamide (IAM), into indole-3-acetic acid (IAA). AMI1 is part of a small isogene family comprising seven members in A. thaliana encoding proteins which share a conserved glycine- and serine-rich amidase-signature. One member of this family has been characterized as an N-acylethanolamine-cleaving fatty acid amidohydrolase (FAAH) and two other members are part of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) or mitochondria (Tom complex) and presumably lack enzymatic activity. Among the hitherto characterized proteins of this family, AMI1 is the only member with indole-3-acetamide hydrolase activity, and IAM is the preferred substrate while N-acylethanolamines and oleamide are not hydrolyzed significantly, thus suggesting a role of AMI1 in auxin biosynthesis. Whereas the enzymatic function of AMI1 has been determined in vitro, the subcellular localization of the enzyme remained unclear. By using different GFP-fusion constructs and an A. thaliana transient expression system, we show a cytoplasmic localization of AMI1. In addition, RT-PCR and anti-amidase antisera were used to examine tissue specific expression of AMI1 at the transcriptional and translational level, respectively. AMI1-expression is strongest in places of highest IAA content in the plant. Thus, it is concluded that AMI1 may be involved in de novo IAA synthesis in A. thaliana.
Resumo:
Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.
Resumo:
Auxin is associated with the regulation of virtually every aspect of plant growth and development. Many previous genetic and biochemical studies revealed that, among the proposed routes for the production of auxin, the so-called indole-3-pyruvic acid (IPA) pathway is the main source for indole-3-acetic acid (IAA) in plants. The IPA pathway involves the action of 2 classes of enzymes, tryptophan-pyruvate aminotransferases (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1(TAA1)/TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR)) and flavin monooxygenases (YUCCA). Both enzyme classes appear to be encoded by small gene families in Arabidopsis consisting of 5 and 11 members, respectively. We recently showed that it is possible to induce transcript accumulation of 2 YUCCA genes, YUC8 and YUC9, by methyl jasmonate treatment. Both gene products were demonstrated to contribute to auxin biosynthesis in planta.1 Here we report that the overexpression of YUC8 as well as YUC9 led to strong lignification of plant aerial tissues. Furthermore, new evidence indicates that this abnormally strong secondary growth is linked to increased levels of ethylene production.
Resumo:
Cinchona officinalis (Rubiaceae), especie endémica del Valle de Loja, ubicado en la región sur del Ecuador, es un recurso forestal de importancia medicinal y ecológica, además la especie ha sido catalogada como planta nacional y es un ícono de la región sur por su aporte a la farmacopea mundial. Esta especie, entre los siglos XVII-XIX sufrió una gran presión en sus poblaciones debido a la extracción masiva de la corteza para la cura del paludismo. Aunque la actividad extractiva generó grandes ingresos a la Corona Española y a la región Sur del Ecuador, ésta fue poco o nada sustentable ecológicamente, provocando la desaparición de la especie en muchos sitios de la provincia, pues, en su momento, no se consideraron alternativas de recuperación de las poblaciones naturales. Actualmente la extracción y consumo de la corteza en la zona de origen es baja o nula, sin embargo esta zona enfrenta nuevas amenazas. La deforestación a causa de proyectos de desarrollo en infraestructuras, la práctica de actividades agrícolas y de ganadería, y los efectos del cambio climático han ocasionado, en estos últimos años, la fragmentación de los ecosistemas. La mayoría de los bosques del sur del Ecuador se han convertido en parches aislados (los bosques en los que se distribuye C. officinalis no son la excepción) siendo esta la principal causa para que la especie se encuentre en estado de amenaza. Los individuos de la especie tienen una alta capacidad de rebrote y producen semillas durante todo el año; sin embargo la capacidad germinativa y la tasa de sobrevivencia son bajas, además de estas dificultades la especie requiere de la asociación con otras especies vegetales para su desarrollo, lo cual ha limitado su distribución en pequeños parches aislados. Con esta problemática, la recuperación natural de las poblaciones es una necesidad evidente. Varios trabajos y esfuerzos previos se han realizado a nivel local: i. Identificación de la distribución actual y potencial; ii. Determinación de la fenología y fructificación iii. Programas de educación ambiental, iv. Análisis moleculares para determinar la diversidad genética. v. Ensayos de propagación vegetativa; y otras acciones de tipo cultural. No obstante, el estado de conservación y manejo de las poblaciones naturales no ha mejorado significativamente, siendo necesaria la aplicación de estrategias integradas de conservación in situ y ex situ, que permitan la recuperación y permanencia de las poblaciones naturales a largo plazo. El presente trabajo tiene como fin dar alternativas para el cultivo de tejidos in vitro de Cinchona officinalis centrados en la propagación masiva a partir de semillas, análisis de la fidelidad genética y alternativas de conservación de tejidos. Los objetivos específicos que se plantean son: i. Analizar el proceso de germinación y proliferación in vitro. ii. Evaluar la estabilidad genética en explantes cultivados in vitro, mediante marcadores ISSR. iii. Establecer protocolos de conservación in vitro mediante limitación del crecimiento y criopreservación de segmentos nodales y yemas. Los resultados más significativos de esta investigación fueron: i. El desarrollo de protocolos eficientes para mejorar los porcentajes de germinación y la proliferación de brotes en explantos cultivados in vitro. Para evaluar el efecto de los fenoles sobre la germinación, se determinó el contenido total de fenoles y el porcentaje de germinación en semillas de C. officinalis comparados con una especie de control, C. pubescens. Para inducir a proliferación, se utilizaron segmentos nodales de plántulas germinadas in vitro en medio Gamborg (1968) suplementado con diferentes combinaciones de reguladores de crecimiento (auxinas y citoquininas). Los resultados obtenidos sugieren que el contenido de compuestos fenólicos es alto en las semillas de C. officinalis en comparación con las semillas de C. pubescens. Estos fenoles pueden eliminarse con peróxido de hidrógeno o con lavados de agua para estimular la germinación. La formación de nuevos brotes y callos en la mayoría de las combinaciones de reguladores de crecimiento se observó en un período de 45 días. El mayor porcentaje de proliferación de brotes, formación de callos y presencia de brotes adventicios se obtuvo en medio Gamborg (B5) suplementado con 5.0 mg/l 6-bencil-aminopurina y 3.0 mg/l de ácido indol-3-butírico. ii. La evaluación de la fidelidad genética de los explantes obtenidos con distintas combinaciones de reguladores de crecimiento vegetal y diversos subcultivos. Se realizó el seguimiento a los explantes obtenidos de la fase anterior, determinando el índice de multiplicación y analizando la fidelidad genética de los tejidos obtenidos por las dos vías regenerativas: brotación directa y regeneración de brotes a partir de callos. Este análisis se realizó por amplificación mediante PCR de las secuencias ubicadas entre microsatélites-ISSR (Inter simple sequence repeat). El medio Gamborg (B5) con 3.0 mg/l de AIB y 5.0 mg/l de BAP usado como medio de inducción en la primera etapa de cultivo generó el mayor índice de proliferación (11.5). Un total de 13 marcadores ISSR fueron analizados, 6 de éstos fueron polimórficos. El mayor porcentaje de variación somaclonal fue inducido en presencia de 1.0 mg/l 2,4-D combinado con 0.2 mg/l Kin con un 1.8% en el segundo sub-cultivo de regeneración, la cual incrementó a 3.6% en el tercer sub-cultivo. Todas las combinaciones con presencia de 2,4-D produjeron la formación de callos y presentaron variación genética. Por su parte la fidelidad genética se mantuvo en los sistemas de propagación directa a través de la formación de brotes a partir de meristemos preformados. iii. El establecimiento de protocolos de conservación in vitro y crioconservación de segmentos nodales y yemas. Para la conservación limitando el crecimiento, se cultivaron segmentos nodales en los medios MS y B5 en tres concentraciones de sus componentes (25, 50 y 100%); y en medio B5 más agentes osmóticos como el manitol, sorbitol y sacarosa en diferentes concentraciones (2, 4 y 8%); los cultivos se mantuvieron por 12 meses sin subcultivos. Para el establecimiento de protocolos para la crioconservación (paralización del metabolismo) se usaron yemas axilares y apicales a las cuales se les aplicaron los métodos de encapsulación-deshidratación y vitrificación. La efectividad de los protocolos usados se determinó en función de la sobrevivencia, reducción del crecimiento y regeneración. Los resultados obtenidos en este apartado reflejan que un crecimiento limitado puede mantener tejidos durante 12 meses de almacenamiento, usando medio B5 más manitol entre 2 y 8%. En los protocolos de crioconservación, se obtuvo el mayor porcentaje de recuperación tras la congelación en NL en el tratamiento control seguido por el método crioprotector de encapsulación-deshidratación. Este trabajo brinda alternativas para la propagación de C. officinalis bajo condiciones in vitro, partiendo de material vegetal con alta diversidad genética. El material propagado puede ser fuente de germoplasma para la recuperación y reforzamiento de las poblaciones naturales así como una alternativa de producción para las comunidades locales debido a la demanda actual de corteza de la zona de origen para la elaboración de agua tónica. ABSTRACT Cinchona officinalis (Rubiaceae) is endemic to the Loja Valley, located in the southern area of Ecuador. The importance of this plant as medical and ecological resource is so great that it has been designated as the national flower and is an icon of the southern region for its contribution to the world pharmacopoeia. Between XVII-XIX centuries its population suffered great reduction due to massive harvesting of the bark to cure malaria. Although extraction activity generated large revenues to the Spanish Crown and the southern region of Ecuador, this was not ecologically sustainable, causing the disappearance of the species in many areas of the province, because during that time alternatives to prevent extinction and recover natural populations were not taken in account. Currently the extraction and consumption of bark in the area of origin is almost absent, but this species faces new threats. Deforestation due to infrastructure development, the practice of farming and ranching, and the effects of climate change had led to the fragmentation of ecosystems during the recent years. Most of the forests of southern Ecuador have become isolated patches, including those where C. officinalis is diffused. The lack of suitable habitat is today the main threat for the species. The species has a high capacity for regeneration and produces seeds throughout the year, but the germination rate is low and the growth is slow. In addition, the species requires the association with other plant species to develop. All these factors had limited its distribution to small isolated patches. The natural recovery of populations is essential to face this problem. Several studies and previous efforts had been made at local level: i. Identification of current and potential distribution; ii. Phenology determination. iii. Environmental education programs, iv. Molecular analisis to determine the genetic diversity. v. Testing of vegetative propagation; and other actions of cultural nature. Despite these efforts, the state of conservation and management of natural populations has not improved significantly. Implementation of integrated in situ and ex situ conservation strategies for the recovery and permanence of long-term natural populations is still needed. This work aims to provide alternatives for in vitro culture of tissue of Cinchona officinalis focused on mass propagation from seeds, genetic fidelity analysis and tissue conservation alternatives. The specific aims are: i. Analyze the process of germination and proliferation in vitro. ii. To evaluate the genetic stability of the explants cultured in vitro by ISSR markers. iii. Establish protocols for in vitro conservation by limiting growth and cryopreservation of nodal segments and buds. The most significant results of this research were: i. The development of efficient protocols to improve germination rates and proliferation of buds in explants cultured in vitro. To study the effect of phenols on germination, the total phenolic content and percentage germination was measured in C. officinalis and in a control species, C. pubescens, for comparison. The content of phenolic compounds in C. officinalis seeds is higher than in C. pubescens. These phenols can be removed with hydrogen peroxide or water washes to stimulate germination. To analyze the regeneration, we used nodal explants from seedlings germinated in vitro on Gamborg medium (1968) supplemented with different combinations of growth regulators (auxins and cytokinins) to induce proliferation. The formation of new shoots and calluses was observed within a period of 45 days in most combinations of growth regulators. The highest percentage of shoot proliferation, callus formation and adventitious buds were obtained in B5 medium supplemented with 5.0 mg/l 6-benzyl-aminopurine and 3.0 mg/l indole-3-butyric acid. ii. Evaluating genetic fidelity explants obtained with various combinations of plant growth regulators and different subcultures. The genetic fidelity was analyzed in tissues obtained by the two regenerative pathways: direct sprouting and shoot regeneration from callus. This analysis was performed by PCR amplification of the sequences located between microsatellite-ISSR (Inter Simple Sequence Repeat). Among a total of 13 ISSR markers analyzed, 6 were polymorphic. The highest percentage of somaclonal variation was induced in the presence of 1.0 mg/l 2,4-D combined with 0.2 mg/l Kin with 1.8% in the second round of regeneration, and increased to 3.6% in the third round. The presence of 2,4-D induced genetic variation in all the combinations of growth regulators. Meanwhile genetic fidelity remained systems propagation through direct shoot formation from meristems preformed. iii. Establishing conservation protocols in vitro and cryoconservation of nodal segments and buds. For medium-term conservation (limited growth) nodal segments were cultured in MS and B5 media at three concentrations (25, 50 and 100%); we tested B5 medium with different concentrations of osmotic agents such as mannitol, sorbitol and sucrose (2, 4 and 8%); cultures were maintained for 12 months with regular subculturing. To establish protocols for cryoconservation (cessation of metabolism) different methods of encapsulation-dehydration and vitrification were applied to axillary and apical buds. The effectiveness of the used protocols is determined based on the survival, growth and regeneration success. The results show that these tissues can be maintained in storage for 12 months, using B5 medium plus mannitol between 2 and 8%. The cryoconservation protocol with highest percentage of recovery was obtained by contral treatment, followed by freezing in NL with encapsulation-dehydration method. This work provides alternatives for the propagation in vitro of C. officinalis, starting from plant material with high genetic diversity. The obtained material represents a source of germplasm to support the recovery and strengthening of natural populations as well as a creation of alternative sources for local communities due to the current demand of bark for the preparation of tonic water.