4 resultados para mode of action

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pesticide applications are still one of the most common control methods against the main olive grove pests and diseases: the olive fruit fly, Bactrocera oleae (Rossi), the olive moth, Prays oleae (Bernard), the black scale, Saissetia oleae (Olivier), and the olive leaf spot, caused by the fungus Spilocaea oleagina Fries. However, and because the new pesticide legislation is aimed at an integrated pest and disease management, it is still important to evaluate and to know the ecotoxicology of pesticides on the natural enemies of the different agrosystems. A part of this work has been focusses on evaluating the direct and indirect effects of kaolin particle films and two copper-based products (Bordeaux mixture and copper oxychloride) through different laboratory, extended laboratory and semi-field experiments. Two natural enemies have been chosen: Psyttalia concolor (Szèpligeti), a parasitoid of the olive fruit fly, and Chilocorus nigritus (F.), predator of Diaspididae. This predator has been used instead of C. bipustulatus (L.), which is the species found in olive orchards. Kaolin mainly acts as a repellent of insects and/or as an oviposition deterrent. It is used in olive groves to control the olive fruit fly and the olive moth. Copper is applied against fungal and bacterial diseases. In olive groves it is used against the olive leaf spot and other diseases. No statistical differences were found in any of the experiments performed, compared to the controls, except when the oral toxicity of the products was evaluated on P. concolor females. In this case, kaolin and copper oxychloride caused a higher mortality 72 hours after the treatments, and both kaolin and the two copper formulations decreased females’ life span. Reproductive parameters were only negatively affected when kaolin was ingested. Apart from these experiments, due to the uncommon mode of action of kaolin, two extra experiments were carried out: a dual choice and a no-choice experiment. In this case, both P. concolor females and C. nigritus adults showed a clear preference for the untreated surfaces when they had the possibility of choosing between a treated surface and an untreated one. When there was no choice, no statistical differences were found between the treatments and the controls. Furthermore, the efficacy and the selectivity of three insect growth regulators (methoxyfenozide, tebufenozide and RH-5849) on B. oleae and P. concolor, respectively, have also been evaluated. In addition to laboratory experiments to evaluate the toxicity of the insecticides, also molecular approaches were used. RNA of both insects was isolated. cDNA was subsequently synthesized and the complete sequences of the ligand biding domain (LBD) of the ecdysone receptor of each insect were then determined. Afterwards the three dimensional structures of both LBDs were constructed. Finally, the docking of the insecticide molecules in the cavity delineated by the 12 α-helix that composed the LBD was performed. Both toxicity assays and molecular docking approaches showed that either methoxyfenozide or tebufenozide had no negative effects nor on B. oleae nor on P. concolor. In contrast, RH-5849 had no deleterious effect to the parasitoid but decreased olive fruit fly adults’ life span, especially when they were in contact with the fresh residue of the insecticide applied on a glass surface. The docking study of RH-5849 molecule has shown a very light hindrance with the wall of the LBD pocket. This means that this molecule could more or less adjust in the cavity. Thus, searching of new insecticides for controlling the olive fruit fly could be based on the basic lead structure of RH-5849 molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Knowledge of pesticide selectivity to natural enemies is necessary for a successful implementation of biological and chemical control methods in integrated pest management (IPM) programs. Diacylhydrazine (DAH)-based ecdysone agonists also known as molting-accelerating compounds (MACs) are considered a selective group of insecticides, and their compatibility with predatory Heteroptera, which are used as biological control agents, is known. However, their molecular mode of action has not been explored in beneficial insects such as Orius laevigatus (Fieber) (Hemiptera: Anthocoridae). RESULTS: In this project in vivo toxicity assays demonstrated that the DAH-based RH-5849, tebufenozide and methoxyfenozide have no toxic effect against O. laevigatus. The ligand-binding domain (LBD) of the ecdysone receptor (EcR) of O. laevigatus was sequenced and a homology protein model was constructed which confirmed a cavity structure with 12 ?-helixes, harboring the natural insect molting hormone 20-hydroxyecdysone. However, docking studies showed that a steric clash occurred for the DAH-based insecticides due to a restricted extent of the ligand-binding cavity of the EcR of O. laevigatus. CONCLUSIONS: The insect toxicity assays demonstrated that MACs are selective for O. laevigatus. The modeling/docking experiments are indications that these pesticides do not bind with the LBD-EcR of O. laevigatus and support that they show no biological effects in the predatory bug. These data help in explaining the compatible use of MACs together with predatory bugs in IPM programs. Keywords: Orius laevigatus, selectivity, diacylhydrazine insecticides, ecdysone receptor, homology modelling, docking studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relationships between agents in multitrophic systems are complex and very specific. Insect-transmitted plant viruses are completely dependent on the behaviour and distribution patterns of their vectors. The presence of natural enemies may directly affect aphid behaviour and spread of plant viruses, as the escape response of aphids might cause a potential risk for virus dispersal. The spatio-temporal dynamics of Cucumber mosaic virus (CMV) and Cucurbit aphid-borne yellows virus (CABYV), transmitted by Aphis gossypii in a non-persistent and persistent manner, respectively, were evaluated at short and long term in the presence and absence of the aphid parasitoid, Aphidius colemani. SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersion at short term, which enhanced CMV spread, though consequences of parasitism suggest potential benefits for disease control at long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV at long term. The impact of aphid parasitoids on the dispersal of plant viruses with different transmission modes is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amblyseius swirskii (Athias-Henriot) is a polyphagous predatory mite which feeds on pollen and small arthropod preys like whiteflies, thrips and mites. This species is widely used in IPM programs in greenhouses, being essential for its success, to obtain information about the non target effects of the pesticides currently used in those crops where the mite is artificially released. This work describes a laboratory contact residual test for evaluating lethal (mortality after 72 hour exposure to fresh residues) and sublethal effects (fecundity and fertility of the surviving mites) of eleven modern pesticides to adults of A. swirskii. Spiromesifen is lipogenesis inhibitor; flonicamid a selective feeding inhibitor with a mode of action not totally known; flubendiamide a modulator of the rhyanodin receptor, sulfoxaflor has a complex mode of action not totally ascertained; metaflumizone is a voltage dependent sodium channel blocker; methoxyfenozide is an IGR, spirotetramat inhibits lipids; abamectin and emamectin activate the Cl- channel; spinosad is a neurotix naturalyte and deltamethrin a pyrethroid used as positive standard. Selected pesticides are effective against different key pests present in horticultural crop areas and were always applied at the maximum field recommended concentration in Spain if registered, or at the concentration recommended by the supplier. Out of the tested pesticides, spiromesifen, flonicamid, flubendiamide, sulfoxaflor, metaflumizone, methoxyfenozide and spirotetramat were harmless to adults of the predatory mite (IOBC toxicity class 1). The rest of pesticides exhibited some negative effects: emamectin was slightly harmful (IOBC 2), deltamethrin moderately harmful (IOBC 3) and spinosad and abamectin harmful (IOBC 4). Further testing under more realistic conditions is needed for those pesticides having some harmful effect on the mite prior deciding their joint use or not. Key words: Amblyseius swirskii, adults, laboratory, residual test, spiromesifen, flonicamid, flubendiamide, sulfoxaflor, metaflumizone, methoxyfenozide, spirotetramat, emamectin, deltamethrin, abamectin, spinosad.