2 resultados para enhanced green fluorescent protein

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of the interaction between Arabidopsis thaliana and adapted (PcBMM) and nonadapted (Pc2127) isolates of the necrotrophic fungus Plectosphaerella cucumerina has contributed to the identification of molecular mechanisms controlling plant resistance to necrotrophs.To characterize the pathogenicity bases of the virulence of necrotrophic fungi in Arabidopsis, we developed P. cucumerina functional genomics tools using Agrobacterium tumefaciens-mediated transformation.We generated PcBMM-GFP and Pc2127-GFP transformants constitutively expressing the green fluorescence protein (GFP), and a collection of random T-DNA insertional PcBMM transformants. Confocal microscopy analyses of the initial stages of PcBMM-GFP infection revealed that this pathogen, like other necrotrophic fungi, does not form an appressorium or penetrate into plant cells, but causes successive degradation of leaf cell layers

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The initial reaction in the pathway leading to the production of indole-3-acetic acid (IAA) in plants is the reaction between chorismate and glutamine to produce anthranilate, catalysed by the enzyme anthranilate synthase (ASA; EC 4.1.3.27). Compared with non-transgenic controls, leaves of transgenic poplar with ectopic expression of the pine cytosolic glutamine synthetase (GS1a; EC 6.3.1.2) produced significantly greater glutamine and significantly enhanced ASA a-subunit (ASA1) transcript and protein (approximately 130% and 120% higher than in the untransformed controls, respectively). Similarly, tobacco leaves fed with 30 mM glutamine and 2 mM chorismate showed enhanced ASA1 transcript and protein (175% and 90% higher than controls, respectively). Furthermore, free IAA was significantly elevated both in leaves of GS1a transgenic poplar and in tobacco leaves fed with 30 mM glutamine and 2 mM chorismate. These results indicated that enhanced cellular glutamine may account for the enhanced growth in GS transgenic poplars through the regulation of auxin biosynthesis