8 resultados para Synthetic biology

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La computación molecular es una disciplina que se ocupa del diseño e implementación de dispositivos para el procesamiento de información sobre un sustrato biológico, como el ácido desoxirribonucleico (ADN), el ácido ribonucleico (ARN) o las proteínas. Desde que Watson y Crick descubrieron en los años cincuenta la estructura molecular del ADN en forma de doble hélice, se desencadenaron otros descubrimientos como las enzimas que cortan el ADN o la reacción en cadena de la polimerasa (PCR), contribuyendo más que signi�cativamente a la irrupción de la tecnología del ADN recombinante. Gracias a esta tecnología y al descenso vertiginoso de los precios de secuenciación y síntesis del ADN, la computación biomolecular pudo abandonar su concepción puramente teórica. En 1994, Leonard Adleman logró resolver un problema de computación NP-completo (El Problema del Camino de Hamilton Dirigido) utilizando únicamente moléculas de ADN. La gran capacidad de procesamiento en paralelo ofrecida por las técnicas del ADN recombinante permitió a Adleman ser capaz de resolver dicho problema en tiempo polinómico, aunque a costa de un consumo exponencial de moléculas de ADN. Utilizando algoritmos similares al de �fuerza bruta� utilizado por Adleman se logró resolver otros problemas NP-completos (por ejemplo, el de Satisfacibilidad de Fórmulas Lógicas / SAT). Pronto se comprendió que la computación con biomolecular no podía competir en velocidad ni precisión con los ordenadores de silicio, por lo que su enfoque y objetivos se centraron en la resolución de problemas biológicos con aplicación biomédica, dejando de lado la resolución de problemas clásicos de computación. Desde entonces se han propuesto diversos modelos de dispositivos biomoleculares que, de forma autónoma (sin necesidad de un bio-ingeniero realizando operaciones de laboratorio), son capaces de procesar como entrada un sustrato biológico y proporcionar una salida también en formato biológico: procesadores que aprovechan la extensión de la Polimerasa, autómatas que funcionan con enzimas de restricción o con deoxiribozimas, circuitos de hibridación competitiva. Esta tesis presenta un conjunto de modelos de dispositivos de ácidos nucleicos escalables, sensibles al tiempo y energéticamente e�cientes, capaces de implementar diversas operaciones de computación lógica aprovechando el fenómeno de la hibridación competitiva del ADN. La capacidad implícita de estos dispositivos para aplicar reglas de inferencia como modus ponens, modus tollens, resolución o el silogismo hipotético tiene un gran potencial. Entre otras funciones, permiten representar implicaciones lógicas (o reglas del tipo SI/ENTONCES), como por ejemplo, �si se da el síntoma 1 y el síntoma 2, entonces estamos ante la enfermedad A�, o �si estamos ante la enfermedad B, entonces deben manifestarse los síntomas 2 y 3�. Utilizando estos módulos lógicos como bloques básicos de construcción, se pretende desarrollar sistemas in vitro basados en sensores de ADN, capaces de trabajar de manera conjunta para detectar un conjunto de síntomas de entrada y producir un diagnóstico de salida. La reciente publicación en la revista Science de un autómata biomolecular de diagnóstico, capaz de tratar las células cancerígenas sin afectar a las células sanas, es un buen ejemplo de la relevancia cientí�ca que este tipo de autómatas tienen en la actualidad. Además de las recién mencionadas aplicaciones en el diagnóstico in vitro, los modelos presentados también tienen utilidad en el diseño de biosensores inteligentes y la construcción de bases de datos con registros en formato biomolecular que faciliten el análisis genómico. El estudio sobre el estado de la cuestión en computación biomolecular que se presenta en esta tesis está basado en un artículo recientemente publicado en la revista Current Bioinformatics. Los nuevos dispositivos presentados en la tesis forman parte de una solicitud de patente de la que la UPM es titular, y han sido presentados en congresos internacionales como Unconventional Computation 2010 en Tokio o Synthetic Biology 2010 en París.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction and motivation: A wide variety of organisms have developed in-ternal biomolecular clocks in order to adapt to cyclic changes of the environment. Clock operation involves genetic networks. These genetic networks have to be mod¬eled in order to understand the underlying mechanism of oscillations and to design new synthetic cellular clocks. This doctoral thesis has resulted in two contributions to the fields of genetic clocks and systems and synthetic biology, generally. The first contribution is a new genetic circuit model that exhibits an oscillatory behav¬ior through catalytic RNA molecules. The second and major contribution is a new genetic circuit model demonstrating that a repressor molecule acting on the positive feedback of a self-activating gene produces reliable oscillations. First contribution: A new model of a synthetic genetic oscillator based on a typical two-gene motif with one positive and one negative feedback loop is pre¬sented. The originality is that the repressor is a catalytic RNA molecule rather than a protein or a non-catalytic RNA molecule. This catalytic RNA is a ribozyme that acts post-transcriptionally by binding to and cleaving target mRNA molecules. This genetic clock involves just two genes, a mRNA and an activator protein, apart from the ribozyme. Parameter values that produce a circadian period in both determin¬istic and stochastic simulations have been chosen as an example of clock operation. The effects of the stochastic fluctuations are quantified by a period histogram and autocorrelation function. The conclusion is that catalytic RNA molecules can act as repressor proteins and simplify the design of genetic oscillators. Second and major contribution: It is demonstrated that a self-activating gene in conjunction with a simple negative interaction can easily produce robust matically validated. This model is comprised of two clearly distinct parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the oscillator dynamics are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this study is that a simple and usual negative interaction, such as degradation, se¬questration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. At the genetic level, this means that an explicit negative feedback loop is not necessary. Unlike many genetic oscillators, this model needs neither cooperative binding reactions nor the formation of protein multimers. Applications and future research directions: Recently, RNA molecules have been found to play many new catalytic roles. The first oscillatory genetic model proposed in this thesis uses ribozymes as repressor molecules. This could provide new synthetic biology design principles and a better understanding of cel¬lular clocks regulated by RNA molecules. The second genetic model proposed here involves only a repression acting on a self-activating gene and produces robust oscil¬lations. Unlike current two-gene oscillators, this model surprisingly does not require a second repressor gene. This result could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. Possible follow-on research directions are: validate models in vivo and in vitro, research the potential of second model as a genetic memory, investigate new genetic oscillators regulated by non-coding RNAs and design a biosensor of positive feedbacks in genetic networks based on the operation of the second model Resumen Introduccion y motivacion: Una amplia variedad de organismos han desarro-llado relojes biomoleculares internos con el fin de adaptarse a los cambios ciclicos del entorno. El funcionamiento de estos relojes involucra redes geneticas. El mo delado de estas redes geneticas es esencial tanto para entender los mecanismos que producen las oscilaciones como para diseiiar nuevos circuitos sinteticos en celulas. Esta tesis doctoral ha dado lugar a dos contribuciones dentro de los campos de los circuitos geneticos en particular, y biologia de sistemas y sintetica en general. La primera contribucion es un nuevo modelo de circuito genetico que muestra un comportamiento oscilatorio usando moleculas de ARN cataliticas. La segunda y principal contribucion es un nuevo modelo de circuito genetico que demuestra que una molecula represora actuando sobre el lazo de un gen auto-activado produce oscilaciones robustas. Primera contribucion: Es un nuevo modelo de oscilador genetico sintetico basado en una tipica red genetica compuesta por dos genes con dos lazos de retroa-limentacion, uno positivo y otro negativo. La novedad de este modelo es que el represor es una molecula de ARN catalftica, en lugar de una protefna o una molecula de ARN no-catalitica. Este ARN catalitico es una ribozima que actua despues de la transcription genetica uniendose y cortando moleculas de ARN mensajero (ARNm). Este reloj genetico involucra solo dos genes, un ARNm y una proteina activadora, aparte de la ribozima. Como ejemplo de funcionamiento, se han escogido valores de los parametros que producen oscilaciones con periodo circadiano (24 horas) tanto en simulaciones deterministas como estocasticas. El efecto de las fluctuaciones es-tocasticas ha sido cuantificado mediante un histograma del periodo y la función de auto-correlacion. La conclusion es que las moleculas de ARN con propiedades cataliticas pueden jugar el misnio papel que las protemas represoras, y por lo tanto, simplificar el diseno de los osciladores geneticos. Segunda y principal contribucion: Es un nuevo modelo de oscilador genetico que demuestra que un gen auto-activado junto con una simple interaction negativa puede producir oscilaciones robustas. Este modelo ha sido estudiado y validado matematicamente. El modelo esta compuesto de dos partes bien diferenciadas. La primera parte es un lazo de retroalimentacion positiva creado por una proteina que se une al promotor de su propio gen activando la transcription. La segunda parte es una interaction negativa en la que una molecula represora evita la union de la proteina con el promotor. Un estudio estocastico muestra que el sistema es robusto al ruido. Un estudio determinista muestra que la dinamica del sistema es debida principalmente a dos tipos de biomoleculas: la proteina, y el complejo formado por el represor y esta proteina. La conclusion principal de este estudio es que una simple y usual interaction negativa, tal como una degradation, un secuestro o una inhibition, actuando sobre el lazo de retroalimentacion positiva de un solo gen es una condition suficiente para producir oscilaciones robustas. Un gen es suficiente y el lazo de retroalimentacion positiva no necesita activar a un segundo gen represor, tal y como ocurre en los relojes actuales con dos genes. Esto significa que a nivel genetico un lazo de retroalimentacion negativa no es necesario de forma explicita. Ademas, este modelo no necesita reacciones cooperativas ni la formation de multimeros proteicos, al contrario que en muchos osciladores geneticos. Aplicaciones y futuras lineas de investigacion: En los liltimos anos, se han descubierto muchas moleculas de ARN con capacidad catalitica. El primer modelo de oscilador genetico propuesto en esta tesis usa ribozimas como moleculas repre¬soras. Esto podria proporcionar nuevos principios de diseno en biologia sintetica y una mejor comprension de los relojes celulares regulados por moleculas de ARN. El segundo modelo de oscilador genetico propuesto aqui involucra solo una represion actuando sobre un gen auto-activado y produce oscilaciones robustas. Sorprendente-mente, un segundo gen represor no es necesario al contrario que en los bien conocidos osciladores con dos genes. Este resultado podria ayudar a clarificar los principios de diseno de los relojes celulares naturales y constituir una nueva y eficiente he-rramienta para crear osciladores geneticos sinteticos. Algunas de las futuras lineas de investigation abiertas tras esta tesis son: (1) la validation in vivo e in vitro de ambos modelos, (2) el estudio del potential del segundo modelo como circuito base para la construction de una memoria genetica, (3) el estudio de nuevos osciladores geneticos regulados por ARN no codificante y, por ultimo, (4) el rediseno del se¬gundo modelo de oscilador genetico para su uso como biosensor capaz de detectar genes auto-activados en redes geneticas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Con el fin de conocer mejor a las bacterias, en la actualidad se han desarrollado aplicaciones que permite simular el comportamiento de las colonias formadas por este tipo de organismos. Una de las piezas más importantes que tienen estos simuladores es el motor de físicas. Éste es el encargado de resolver todas las fuerzas producidas entre las bacterias y conseguir que todas queden correctamente colocadas y distribuidas a lo largo de la colonia, tratando de asemejarse lo más posible a la realidad. En una simulación de éstas características, todas las bacterias, además de estar en contacto entre sí, crecen en un pequeño porcentaje durante cada fotograma. Ello produce una gran cantidad de solapamiento a lo largo de toda la colonia que el motor de físicas tiene que resolver. El trabajo que se describe en este documento surge de la ineficiencia del proceso actual para distribuir el solapamiento originado en el interior de la colonia, hasta su exterior. Es importante señalar que la física se lleva el 99% del tiempo de procesado de la simulación de una colonia, con lo que una mejora en el motor de físicas conseguiría incrementar en gran medida la capacidad de simulación. El objetivo no es otro que poder simular más cantidad de bacterias en menos tiempo, facilitando el estudio de esta área tan reciente como es la biología sintética. ---ABSTRACT---In order to better understand bacteria, new applications have been developed to simulate the behavior of colonies formed by these organisms. One of the most important parts of these simulators is the physics engine. This module is responsible for solving all the forces produced between bacteria and ensure that they are properly located and distributed throughout the colony, trying to be as close as possible to reality. In a simulation with these features, all bacteria, besides being in contact with each other, grow in a small percentage at each frame. This produces a large amount of overlap along the entire colony that the physics engine must solve. The work described in this document arises from the inefficiency of the current process to distribute the overlap originated at the core of the colony outwards. Importantly, physics takes up 99% of the processing time of the simulation of a colony. Therefore, improving the physics engine would translate in a drastic increase in the throughput of the simulation. The goal is simply to be able to simulate more bacteria in less time, making the study of the recent area, synthetic biology, much easier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resulta interesante comprender como microorganismos sencillos como la bacteria Escherichia coli poseen mecanismos no tan simples para responder al entorno en el que está gestionada por complicadas redes de regulación formadas por genes y proteínas, donde cada elemento de la red genética debe tomar parte en armonía, en el momento justo y la cantidad adecuada para dar lugar a la respuesta celular apropiada. La biología sintética es un nuevo área de la biología y la tecnología que fusiona la biolog ía molecular, la ingeniería genética y las herramientas computacionales, para crear sistemas biológicos con funcionalidades novedosas. Los sistemas creados sintéticamente son ya una realidad, y cada vez se acumulan más trabajos alrededor del mundo que muestran su factibilidad. En este campo no solo se hacen pequeñas modificaciones en la información genética, sino que también se diseñan, manipulan e introducen circuitos genéticos a los organismos. Actualmente, se hace un gran esfuerzo para construir circuitos genéticos formados por numerosos genes y caracterizar la interacción de los mismos con otras moléculas, su regulaci ón, expresión y funcionalidad en diferentes organismos. La mayoría de los proyectos de biología sintética que se han desarrollado hasta ahora, se basan en el conocimiento actual del funcionamiento de los organismos vivos. Sin embargo, la información es numerosa y creciente, por lo que se requiere de herramientas computacionales y matem áticas para integrar y hacer manejable esta gran cantidad de información. El simulador de colonias bacterianas GRO posee la capacidad de representar las dinámicas más simples del comportamiento celular, tales como crecimiento, división y comunicación intercelular mediante conjugación, pero carece de la capacidad de simular el comportamiento de la colonia en presencia de un circuito genético. Para ello, se ha creado un nuevo módulo de regulación genética que maneja las interaciones entre genes y proteínas de cada célula ejecutando respuestas celulares específicas. Dado que en la mayoría de los experimentos intervienen colonias del orden de 105 individuos, es necesario un módulo de regulación genética simplificado que permita representar de la forma más precisa posible este proceso en colonias de tales magnitudes. El módulo genético integrado en GRO se basa en una red booleana, en la que un gen puede transitar entre dos estados, on (expresado) o off (reprimido), y cuya transición viene dada por una serie de reglas lógicas.---ABSTRACT---It is interesting to understand how simple organisms such as Escherichia coli do not have simple mechanisms to respond to the environment in which they find themselves. This response is managed by complicated regulatory networks formed by genes and proteins, where each element of the genetic network should take part in harmony, at the right time and with the right amount to give rise to the appropriate cellular response. Synthetic biology is a new area of biology and technology that combines molecular biology, genetic engineering and computational tools to create biological systems with novel features. The synthetically created systems are already a reality, and increasingly accumulate work around the world showing their feasibility. In this field not only minor changes are made in the genetic information but also genetic circuits designed, manipulated and introduced into the organisms. Currently, it takes great effort to build genetic circuits formed by numerous genes and characterize their interaction with other molecules, their regulation, their expression and their function in different organisms. Most synthetic biology projects that have been developed so far are based on the current knowledge of the functioning of living organisms. However, there is a lot of information and it keeps accumulating, so it requires computational and mathematical tools to integrate and manage this wealth of information. The bacterial colonies simulator, GRO, has the ability to represent the simplest dynamics of cell behavior, such as growth, division and intercellular communication by conjugation, but lacks the ability to simulate the behavior of the colony in the presence of a genetic circuit. To this end, a new genetic regulation module that handles interactions between genes and proteins for each cell running specific cellular responses has been created. Since most experiments involve colonies of about 105 individuals, a simplified genetic module which represent cell dynamics as accurately and simply as possible is needed. The integrated genetic GRO module is based on a Boolean network, in which a gene can be in either of two states, on (expressed) or off (repressed), and whose transition is given by a set of logical rules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hace no más de una década que empezó a escucharse el término biología sintética. Este área de estudio emergente consiste en la ingeniería y programación de sistemas biológicos, tratando la biología como una tecnología programable a la que aplican los principios y metodologías de la ingeniería, con el fin de crear nuevas funcionalidades genéticas desde cero, procurando asÍ algún beneficio como por ejemplo, programar células bacterianas para producir biocombustibles. Sin embargo, para la creación de dichas funcionalidades es necesario conocer bien al organismo sobre el que se van a implantar. Por este motivo, los biólogos sintéticos emplean bacterias en sus estudios, ya que es la forma de vida más simple, está presente en prácticamente todos los nichos ecológicos, desempeña algunas de las funcionalidades vitales para los humanos y lo mas importante, se conoce prácticamente todo su material genético. Los experimentos son costosos en tiempo y dinero, siendo necesaria la ayuda de herramientas que faciliten esta labor, los simuladores. En PLASWIRES, proyecto europeo de biología sintética en el que se engloba este este trabajo, el simulador empleado es GRO. Sin embargo, en GRO el crecimiento de las bacterias ocurre de forma exponencial y sin restricciones, generando comportamientos poco realistas. Por ello, se ha considerado relevante en biología sintética, y en el simulador GRO en particular, disponer de un modelo de crecimiento bacteriano dependiente de los nutrientes. El desarrollo de este trabajo se centra en la implementación de un módulo de consumo de nutrientes en colonias de bacterias simuladas con GRO, introduciendo así la limitación de nutrientes y evitanto que las bacterias crezcan exponencialmente. Se han introducido nutrientes en el medio y la capacidad de consumirlos, con el objetivo de obtener un crecimiento ajustado al que ocurre en la naturaleza. Además, se ha desarrollado en GRO una nueva función de adquisición de volumen, que condiciona el volumen adquirido por cada bacteria en función de los nutrientes. La implentación de las dos aportaciones presentadas ha supuesto la adición de funcionalidad extra a GRO, convirtiéndolo en el único simulador de bacterias que tiene en cuenta el crecimiento bacteriano dependiente de nutrientes.---ABSTRACT---It has been in this last decade that the synthetic biology term began to be heard. This emergent area of study consists in the engineering and programming of biological systems, dealing with biology as a programable technology in which the engineering principles and methodologies are applied in order to create novel genetic functinalities from scratch, obtaining some advatages such as programmed bacteria in order to produce biofuels. However, to create this functionalities, it is necessary to know well the organisms in which they are going to be implemented. For this reason, synthetic biology researchers use bacteria, because it is the simplest life form, it can be found in almost all the ecological niche, it does some vital function to humans and, most important, almost all of its genetic information is known. Experiments are expensive in time and money, making it necessary to use tools to ease this task: the simulators. In PLASWIRES, the european synthetic biology project in which this work is included, the simulator used is GRO. However, the bacterial growth in GRO is exponential and it does not have restrictions, generating unrealistic behaviours. Therefore, it has been considered relevant in synthetic biology, and in a particular way in GRO, to provide a bacterial growth model dependent on nutrient. This work focuses on the implementation of a nutrient consumption module in bacteria colonies simulated with GRO, introducing a nuntrient limitation and avoiding the bacteria exponential growth. The module introduces nutrients and the capacity for bacteria to consume them, aiming to obtain realistic growth simulations that fit the observations made in nature. Moreover, an adquisition volumen function has been developed in GRO, determining the volumen depending on nutrients. This two contributions make GRO the only bacteria simulator that computes growth depending on nutrients

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se plantea desarrollar una herramienta que ofrezca un soporte eficiente para la creación y el diseño de protocolos biológicos a los investigadores en biología sintética. Partiendo de este objetivo, se definen dos cometidos principales: Realizar un estudio de las herramientas existentes que ofrezcan soporte al diseño y aquellas pensadas para diseñar protocolos biológicos, el fin de este estudio es descubrir las funcionalidades que implementan estas herramientas para mejorarlas. Además, se ha de desarrollar una herramienta web que, mediante un lenguaje visual, permita diseñar y crear protocolos de biología sintética, guardándolos en un formato de archivo independiente del lenguaje. En este documento se encuentra, en primer lugar, la definición de objetivos y la descripción del método de desarrollo seguido durante la implementación del proyecto; después, el marco teórico, donde se exponen las herramientas estudiadas y las similitudes y diferencias con la idea que se tiene de la aplicación, y también las herramientas de desarrollo web con las que se va a implementar el proyecto. A continuación, se muestran los resultados obtenidos, mediante la definición de requisitos, así como una exposición de la propia herramienta. Por último, se encuentra la estrategia de validación que se ha seguido en el desarrollo del proyecto y se exponen las conclusiones obtenidas de estas validaciones; también se incluyen al final las conclusiones del proyecto y las líneas futuras de desarrollo.---ABSTRACT---It is planned to develop a tool that provides efficient support for the creation and design of biological protocols researchers in synthetic biology. Based on this goal, two main tasks are defined: Conduct a study of existing tools that provide design support and those intended to design biological protocols, the purpose of this study is to discover the functionalities that implement these tools to improve them. Furthermore, it has to develop a web tool that, through a visual language, allowing design and create synthetic biology protocols, storing them in an independent language file format. In this document is located, first, the definition of objectives and description of the development method followed during project implementation; then the theoretical framework where tools and studied the similarities and differences with the idea we have of the application are discussed, and development tools with which they will implement the project. Then the results obtained, by defining requirements as well as an exhibition of the own tool. Finally, the validation strategy that has been followed in the development of the project and the conclusions drawn from these validations are exposed; also, it is included at the end of the project conclusions and future lines of development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Biología bajo Demanda es un concepto novedoso, que está siendo abordado en la actualidad desde distintos enfoques, que serán expuestos en este documento. Dado este carácter innovador, se trata de un ámbito donde la investigación está muy presente en estos momentos. Las Tecnologías de la Información y Comunicación (TICs) llevan un tiempo aportando soluciones muy efectivas para algunos de los problemas a los que se enfrente actualmente la biología sintética. Una de estas soluciones son las plataformas de Cloud Computing, que aportan un entorno de trabajo escalable, flexible y seguro. Por ello, se ha empleado este tipo de tecnología en este trabajo fin de grado en el área de la biología sintética mediante el concepto de biología bajo demanda. Para desarrollar la plataforma de biología bajo demanda ha sido necesario analizar el estado de esta temática actualmente y sus avances. Además, ha sido estimable el estudio de las opiniones de los miembros del grupo de investigación. Todo ello ha permitido llevar a cabo una captura de requisitos adecuada para el ámbito de este proyecto. Se ha decidido que los servidores de aplicaciones web son la respuesta más adecuada a la hora de implementar las soluciones obtenidas para el desarrollo de la plataforma de biología bajo demanda. En concreto, por sus características, se ha decidido emplear JavaEE de Oracle. El modelo implementado emplea soluciones conocidas y fiables basadas en patrones de diseño software. Así, conseguimos cumplir con uno de los principales objetivos de este proyecto, que es lograr un sistema flexible y escalable. Por otro lado, debido a la incertidumbre que conlleva un área tan innovadora, se ha decidido optar por una metodología ágil. Esto supone un plan de trabajo centrado en reuniones semanales conjuntas con el director y los compañeros del grupo de trabajo, empleando prototipado rápido y programación extrema. Finalmente, se ha conseguido desarrollar una plataforma de biología bajo demanda que puede ser la base para el trabajo de los biólogos del ámbito de la biología sintética en un futuro próximo.---ABSTRACT---Biology on demand is a new concept, which is currently being addressed from different approaches, which will be presented in this document. Given this innovative character, it is an area where research is a main factor right now. Technologies of Information and Communication Technologies (ICTs) have provided very effective solutions to some of the problems that synthetic biology is currently facing. One of these solutions is cloud computing platforms, which provide an environment for scalable, flexible and secure work. Therefore, we have used this technology in this final project in the area of synthetic biology through the concept of biology on demand. To develop a biology-on-demand platform it has been necessary to analyze the state of art. The opinions of members of the research group have also been very influential. All this has allowed us to conduct a proper capture requirements for the scope of this project here developed. It was decided that web application servers are the best answer when it comes to implementing the solutions obtained for the development of biology-on-demand platform. In particular, by its main features, it was decided to use Oracle’s JavaEE. The implemented model uses known and reliable solutions based on software design patterns. So, we get to meet one of the main objectives of this project, which is to achieve a flexible and scalable system. On the other hand, due to the uncertainty involved in such an innovative area, it was appropriate to opt for an agile methodology. The work plan was focused on weekly meetings with the director and coworkers, using additive technology and extreme programming. Finally, this project has been successful in developing a biology-on-demand platform that can be the basis for the work of biologists in the field of synthetic biology in the near future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente TFG está enmarcado en el contexto de la biología sintética (más concretamente en la automatización de protocolos) y representa una parte de los avances en este sector. Se trata de una plataforma de gestión de laboratorios autónomos. El resultado tecnológico servirá para ayudar al operador a coordinar las máquinas disponibles en un laboratorio a la hora de ejecutar un experimento basado en un protocolo de biología sintética. En la actualidad los experimentos biológicos tienen una tasa de éxito muy baja en laboratorios convencionales debido a la cantidad de factores externos que intervienen durante el protocolo. Además estos experimentos son caros y requieren de un operador pendiente de la ejecución en cada fase del protocolo. La automatización de laboratorios puede suponer un aumento de la tasa de éxito, además de una reducción de costes y de riesgos para los trabajadores en el entorno del laboratorio. En la presente propuesta se pretende que se dividan las distintas entidades de un laboratorio en unidades funcionales que serán los elementos a ser coordinados por la herramienta resultado del TFG. Para aportar flexibilidad a la herramienta se utilizará una arquitectura orientada a servicios (SOA). Cada unidad funcional desplegará un servicio web proporcionando su funcionalidad al resto del laboratorio. SOA es esencial para la comunicación entre máquinas ya que permite la abstracción del tipo de máquina que se trate y como esté implementada su funcionalidad. La principal dificultad del TFG consiste en lidiar con las dificultades de integración y coordinación de las distintas unidades funcionales para poder gestionar adecuadamente el ciclo de vida de un experimento. Para ello se ha realizado un análisis de herramientas disponibles de software libre. Finalmente se ha escogido la plataforma Apache Camel como marco sobre el que crear la herramienta específica planteada en el TFG. Apache Camel juega un papel importantísimo en este proyecto, ya que establece las capas de conexión a los distintos servicios y encamina los mensajes oportunos a cada servicio basándose en el contenido del fichero de entrada. Para la preparación del prototipo se han desarrollado una serie de servicios web que permitirán realizar pruebas y demostraciones de concepto de la herramienta en sí. Además se ha desarrollado una versión preliminar de la aplicación web que utilizará el operador del laboratorio para gestionar las peticiones, decidiendo que protocolo se ejecuta a continuación y siguiendo el flujo de tareas del experimento.---ABSTRACT---The current TFG is bound by synthetic biology context (more specifically in the protocol automation) and represents an element of progression in this sector. It consists of a management platform for automated laboratories. The technological result will help the operator to coordinate the available machines in a lab, this way an experiment based on a synthetic biological protocol, could be executed. Nowadays, the biological experiments have a low success rate in conventional laboratories, due to the amount of external factors that intrude during the protocol. On top of it, these experiments are usually expensive and require of an operator monitoring at every phase of the protocol. The laboratories’ automation might mean an increase in the success rate, and also a reduction of costs and risks for the lab workers. The current approach is hoped to divide the different entities in a laboratory in functional units. Those will be the elements to be coordinated by the tool that results from this TFG. In order to provide flexibility to the system, a service-oriented architecture will be used (SOA). Every functional unit will deploy a web service, publishing its functionality to the rest of the lab. SOA is essential to facilitate the communication between machines, due to the fact that it provides an abstraction on the type of the machine and how its functionality is implemented. The main difficulty of this TFG consists on grappling with the integration and coordination problems, being able to manage successfully the lifecycle of an experiment. For that, a benchmark has been made on the available open source tools. Finally Apache Camel has been chosen as a framework over which the tool defined in the TFG will be created. Apache Camel plays a fundamental role in this project, given that it establishes the connection layers to the different services and routes the suitable messages to each service, based on the received file’s content. For the prototype development a number of services that will allow it to perform demonstrations and concept tests have been deployed. Furthermore a preliminary version of the webapp has been developed. It will allow the laboratory operator managing petitions, to decide what protocol goes next as it executes the flow of the experiment’s tasks.