16 resultados para Spectrum analysis

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the security evaluation, energy consumption optimization, and spectrum scarcity analysis of artificial noise techniques to increase physical-layer security in Cognitive Wireless Sensor Networks (CWSNs). These techniques introduce noise into the spectrum in order to hide real information. Nevertheless, they directly affect two important parameters in Cognitive Wireless Sensor Networks (CWSNs), energy consumption and spectrum utilization. Both are affected because the number of packets transmitted by the network and the active period of the nodes increase. Security evaluation demonstrates that these techniques are effective against eavesdropper attacks, but also optimization allows for the implementation of these approaches in low-resource networks such as Cognitive Wireless Sensor Networks. In this work, the scenario is formally modeled and the optimization according to the simulation results and the impact analysis over the frequency spectrum are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the seed dispersal spectrum of the tropical dry forests of Southern Ecuador, in an effort to contribute to the knowledge of the complex dynamics of tropical dry forests. Seed dispersal spectrum was described for a total number of 160 species. Relationships of dispersal syndromes with plant growth form and climatic seasonality were explored. For a subset of 97 species, we determined whether dispersal spectrum changes when species abundance, in addition to species number, is taken into account. The same subset was used to relate dispersal syndromes with the environmental conditions. Zoochorous species dominated in the studied community. When considering the individual abundance of each species, however, anemochory was the prevalent dispersal syndrome. We found a significant difference in the frequency of dispersal syndromes among plant growth forms, with epizoochory only occurring in shrub species. The dispersal spectrum was dependent on climatic seasonality. The largest proportion of anemochorous species fructified during the dry season, while zoochorous diaspores dominated during the rainy season. A fourth-corner analysis indicated that the seed dispersal spectrum of Southern Ecuador dry forests is controlled by environmental conditions such as annual precipitation, annual temperature range or topography. Our results suggest that spatio-temporal changes in the environmental conditions may affect important ecological processes for dispersal. Thus, the predominance of one syndrome or another may depend on the spatial variation of environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Digital Elevation Model (DEM) provides the information basis used for many geographic applications such as topographic and geomorphologic studies, landscape through GIS (Geographic Information Systems) among others. The DEM capacity to represent Earth?s surface depends on the surface roughness and the resolution used. Each DEM pixel depends on the scale used characterized by two variables: resolution and extension of the area studied. DEMs can vary in resolution and accuracy by the production method, although there are statistical characteristics that keep constant or very similar in a wide range of scales. Based on this property, several techniques have been applied to characterize DEM through multiscale analysis directly related to fractal geometry: multifractal spectrum and the structure function. The comparison of the results by both methods is discussed. The study area is represented by a 1024 x 1024 data matrix obtained from a DEM with a resolution of 10 x 10 m each point, which correspond with a region known as ?Monte de El Pardo? a property of Spanish National Heritage (Patrimonio Nacional Español) of 15820 Ha located to a short distance from the center of Madrid. Manzanares River goes through this area from North to South. In the southern area a reservoir is found with a capacity of 43 hm3, with an altitude of 603.3 m till 632 m when it is at the highest capacity. In the middle of the reservoir the minimum altitude of this area is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for the simulation of spectrum compatible earthquake time histories has existed since earthquake engineering for complicated structures began. More than the safety of the main structure, the analysis of the equipment (piping, racks, etc.) can only be assessed on the basis of the time history of the floor in which they are contained. This paper presents several methods for calculating simulated spectrum compatible earthquakes as well as a comparison between them. As a result of this comparison, the use of the phase content in real earthquakes as proposed by Ohsaki appears as an effective alternative to the classical methods. With this method, it is possible to establish an approach without the arbitrary modulation commonly used in other methods. Different procedures are described as is the influence of the different parameters which appear in the analysis. Several numerical examples are also presented, and the effectiveness of Ohsaki's method is confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is aimed to present the main differences of nuclear data uncertainties among three different nuclear data libraries: EAF-2007, EAF-2010 and SCALE-6.0, under different neutron spectra: LWR, ADS and DEMO (fusion). To take into account the neutron spectrum, the uncertainty data are collapsed to onegroup. That is a simple way to see the differences among libraries for one application. Also, the neutron spectrum effect on different applications can be observed. These comparisons are presented only for (n,fission), (n,gamma) and (n,p) reactions, for the main transuranic isotopes (234,235,236,238U, 237Np, 238,239,240,241Pu, 241,242m,243Am, 242,243,244,245,246,247,248Cm, 249Bk, 249,250,251,252Cf). But also general comparisons among libraries are presented taking into account all included isotopes. In other works, target accuracies are presented for nuclear data uncertainties; here, these targets are compared with uncertainties on the above libraries. The main results of these comparisons are that EAF-2010 has reduced their uncertainties for many isotopes from EAF-2007 for (n,gamma) and (n,fission) but not for (n,p); SCALE-6.0 gives lower uncertainties for (n,fission) reactions for ADS and PWR applications, but gives higher uncertainties for (n,p) reactions in all applications. For the (n,gamma) reaction, the amount of isotopes which have higher uncertainties is quite similar to the amount of isotopes which have lower uncertainties when SCALE-6.0 and EAF-2010 are compared. When the effect of neutron spectra is analysed, the ADS neutron spectrum obtained the highest uncertainties for (n,gamma) and (n,fission) reactions of all libraries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (fem). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterization of the NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NWs diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectra of Si NWs, where it is demonstrated that temperature induced by the laser beam play a major role in shaping the Raman spectrum of Si NWs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed. Calculations are performed with the Monte Carlo transport-coupled depletion code SERPENT together with post-processing tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (FEM). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterisation of NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NW's diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectrum of Si NWs. It is demonstrated that the temperature increase induced by the laser beam plays a major role in shaping the Raman spectrum of Si NWs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In countries that started early with wind energy, the old wind turbines were located in places where the wind is often very good. Since the best places in which the wind is concerned are occupied by old wind turbines (with lower capacity than the more recent ones) the trend is to start replacing old turbines with new ones. With repowering, the first generation of wind turbines can be replaced by modern multi-megawatt wind turbines. The aim of this article is to analyze energy policies in the Spanish energy sector in the repowering of wind farms from the viewpoint of the current situation of the wind energy sector. The approach presented in this article is meant to explain what have been the policies related to the repowering sector making a brief analysis of the spectrum of different stimulii that are demanded by the market analyzing also the future perspectives of the repowering sector by establishing the new opportunities based on the new published regulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several attempts have been carried out to manufacture intermediate band solar cells (IBSC) by means of quantum dot (QD) superlattices. This novel photovoltaic concept allows the collection of a wider range of the sunlight spectrum in order to provide higher cell photocurrent while maintaining the open-circuit voltage (VOC) of the cell. In this work, we analyze InAs/GaAsN QD-IBSCs. In these cells, the dilute nitrogen in the barrier plays an important role for the strain-balance (SB) of the QD layer region that would otherwise create dislocations under the effect of the accumulated strain. The introduction of GaAsN SB layers allows increasing the light absorption in the QD region by multi-stacking more than 100 QD layers. The photo-generated current density (JL) versus VOC was measured under varied concentrated light intensity and temperature. We found that the VOC of the cell at 20 K is limited by the bandgap of the GaAsN barriers, which has important consequences regarding IBSC bandgap engineering that are also discussed in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La región del espectro electromagnético comprendida entre 100 GHz y 10 THz alberga una gran variedad de aplicaciones en campos tan dispares como la radioastronomía, espectroscopíamolecular, medicina, seguridad, radar, etc. Los principales inconvenientes en el desarrollo de estas aplicaciones son los altos costes de producción de los sistemas trabajando a estas frecuencias, su costoso mantenimiento, gran volumen y baja fiabilidad. Entre las diferentes tecnologías a frecuencias de THz, la tecnología de los diodos Schottky juega un importante papel debido a su madurez y a la sencillez de estos dispositivos. Además, los diodos Schottky pueden operar tanto a temperatura ambiente como a temperaturas criogénicas, con altas eficiencias cuando se usan como multiplicadores y con moderadas temperaturas de ruido en mezcladores. El principal objetivo de esta tesis doctoral es analizar los fenómenos físicos responsables de las características eléctricas y del ruido en los diodos Schottky, así como analizar y diseñar circuitos multiplicadores y mezcladores en bandas milimétricas y submilimétricas. La primera parte de la tesis presenta un análisis de los fenómenos físicos que limitan el comportamiento de los diodos Schottky de GaAs y GaN y de las características del espectro de ruido de estos dispositivos. Para llevar a cabo este análisis, un modelo del diodo basado en la técnica de Monte Carlo se ha considerado como referencia debido a la elevada precisión y fiabilidad de este modelo. Además, el modelo de Monte Carlo permite calcular directamente el espectro de ruido de los diodos sin necesidad de utilizar ningún modelo analítico o empírico. Se han analizado fenómenos físicos como saturación de la velocidad, inercia de los portadores, dependencia de la movilidad electrónica con la longitud de la epicapa, resonancias del plasma y efectos no locales y no estacionarios. También se ha presentado un completo análisis del espectro de ruido para diodos Schottky de GaAs y GaN operando tanto en condiciones estáticas como variables con el tiempo. Los resultados obtenidos en esta parte de la tesis contribuyen a mejorar la comprensión de la respuesta eléctrica y del ruido de los diodos Schottky en condiciones de altas frecuencias y/o altos campos eléctricos. También, estos resultados han ayudado a determinar las limitaciones de modelos numéricos y analíticos usados en el análisis de la respuesta eléctrica y del ruido electrónico en los diodos Schottky. La segunda parte de la tesis está dedicada al análisis de multiplicadores y mezcladores mediante una herramienta de simulación de circuitos basada en la técnica de balance armónico. Diferentes modelos basados en circuitos equivalentes del dispositivo, en las ecuaciones de arrastre-difusión y en la técnica de Monte Carlo se han considerado en este análisis. El modelo de Monte Carlo acoplado a la técnica de balance armónico se ha usado como referencia para evaluar las limitaciones y el rango de validez de modelos basados en circuitos equivalentes y en las ecuaciones de arrastredifusión para el diseño de circuitos multiplicadores y mezcladores. Una notable característica de esta herramienta de simulación es que permite diseñar circuitos Schottky teniendo en cuenta tanto la respuesta eléctrica como el ruido generado en los dispositivos. Los resultados de las simulaciones presentados en esta parte de la tesis, tanto paramultiplicadores comomezcladores, se han comparado con resultados experimentales publicados en la literatura. El simulador que integra el modelo de Monte Carlo con la técnica de balance armónico permite analizar y diseñar circuitos a frecuencias superiores a 1 THz. ABSTRACT The terahertz region of the electromagnetic spectrum(100 GHz-10 THz) presents a wide range of applications such as radio-astronomy, molecular spectroscopy, medicine, security and radar, among others. The main obstacles for the development of these applications are the high production cost of the systems working at these frequencies, highmaintenance, high volume and low reliability. Among the different THz technologies, Schottky technology plays an important rule due to its maturity and the inherent simplicity of these devices. Besides, Schottky diodes can operate at both room and cryogenic temperatures, with high efficiency in multipliers and moderate noise temperature in mixers. This PhD. thesis is mainly concerned with the analysis of the physical processes responsible for the characteristics of the electrical response and noise of Schottky diodes, as well as the analysis and design of frequency multipliers and mixers at millimeter and submillimeter wavelengths. The first part of the thesis deals with the analysis of the physical phenomena limiting the electrical performance of GaAs and GaN Schottky diodes and their noise performance. To carry out this analysis, a Monte Carlo model of the diode has been used as a reference due to the high accuracy and reliability of this diode model at millimeter and submillimter wavelengths. Besides, the Monte Carlo model provides a direct description of the noise spectra of the devices without the necessity of any additional analytical or empirical model. Physical phenomena like velocity saturation, carrier inertia, dependence of the electron mobility on the epilayer length, plasma resonance and nonlocal effects in time and space have been analysed. Also, a complete analysis of the current noise spectra of GaAs and GaN Schottky diodes operating under static and time varying conditions is presented in this part of the thesis. The obtained results provide a better understanding of the electrical and the noise responses of Schottky diodes under high frequency and/or high electric field conditions. Also these results have helped to determine the limitations of numerical and analytical models used in the analysis of the electrical and the noise responses of these devices. The second part of the thesis is devoted to the analysis of frequency multipliers and mixers by means of an in-house circuit simulation tool based on the harmonic balance technique. Different lumped equivalent circuits, drift-diffusion and Monte Carlo models have been considered in this analysis. The Monte Carlo model coupled to the harmonic balance technique has been used as a reference to evaluate the limitations and range of validity of lumped equivalent circuit and driftdiffusion models for the design of frequency multipliers and mixers. A remarkable feature of this reference simulation tool is that it enables the design of Schottky circuits from both electrical and noise considerations. The simulation results presented in this part of the thesis for both multipliers and mixers have been compared with measured results available in the literature. In addition, the Monte Carlo simulation tool allows the analysis and design of circuits above 1 THz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel time-stepping shift-invert algorithm for linear stability analysis of laminar flows in complex geometries is presented. This method, based on a Krylov subspace iteration, enables the solution of complex non-symmetric eigenvalue problems in a matrix-free framework. Validations and comparisons to the classical exponential method have been performed in three different cases: (i) stenotic flow, (ii) backward-facing step and (iii) lid-driven swirling flow. Results show that this new approach speeds up the required Krylov subspace iterations and has the capability of converging to specific parts of the global spectrum. It is shown that, although the exponential method remains the method of choice if leading eigenvalues are sought, the performance of the present method could be dramatically improved with the use of a preconditioner. In addition, as opposed to other methods, this strategy can be directly applied to any time-stepper, regardless of the temporal or spatial discretization of the latter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical filters are crucial elements in optical communication networks. Their influence toward the optical signal will affect the communication quality seriously. In this paper we will study and simulate the optical signal impairment and crosstalk penalty caused by different kinds of filters, which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (F-P). Signal impairment from filter concatenation effect and crosstalk penalty from out-band and in-band are analyzed from Q-penalty, eye opening penalty (EOP) and optical spectrum. The simulation results show that signal impairment and crosstalk penalty induced by the Butterworth filter is the minimum among these four types of filters. Signal impairment caused by filter concatenation effect shows that when center frequency of all filters is aligned perfectly with the laser's frequency, 12 50-GHz Butterworth filters can be cascaded, with 1-dB EOP. This value is reduced to 9 when the center frequency is misaligned with 5 GHz. In the 50-GHz channel spacing DWDM networks, total Q-penalty induced by a pair of Butterworth filters based demultiplexer and multiplexer is lower than 0.5 dB when the filter bandwidth is in the range of 42-46 GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic parameters are frequently used to assess the presence of pathologies in human voice. Many of them have demonstrated to be useful but in some cases its results could be optimized by selecting appropriate working margins. In this study two indices, CIL and RALA, obtained from Modulation Spectra are described and tuned using different frame lengths and frequency ranges to maximize AUC in normal to pathological voice detection. After the tuning process, AUC reaches 0.96 and 0.95 values for CIL and RALA respectively representing an improvement of 16 % and 12 % at each case respect to the typical tuning based only on frame length selection.