6 resultados para Pepino
em Universidad Politécnica de Madrid
Resumo:
El injerto en hortalizas es uno de los temas de más actualidad en el panorama hortícola, no solo español, sino occidental, y recalcamos occidental, pues en muchos países que no corresponden a ese ámbito, sobre todo asiáticos: Japón, Corea, China, Filipinas, etc., esta es una técnica que cuenta con una gran difusión desde hace décadas, siendo, por ejemplo en Japón, la mayoría de sus cultivos de cucurbitáceas y solanáceas realizados con planta injertada. A finales de los noventa quedó claro que el empleo de bromuro de metilo tenía una fecha de caducidad y que las zonas que tenían una fuerte dependencia de este desinfectante de suelo debían de buscar alternativas a un plazo lo más corto posible, con un punto añadido sobre etapas anteriores, debían ser alternativas lo más respetuosas posible con el medio ambiente y que no incrementaran, de forma importante, los costes de producción. En la zona centro y concretamente en los invernaderos de la Comunidad de Madrid y zonas cercanas de Toledo y Guadalajara el pepino era y es el cultivo predominante, los horticultores empleaban el bromuro de metilo de forma sistemática para desinfectar sus suelos y la desaparición de este producto les planteaba una gran incertidumbre, lo que llevó a que desde diferentes instancias se buscaran diferentes alternativas. Tras analizar las posibilidades que se podían implementar y conocido el buen resultado que había dado el injerto en sandía en Almería, se decidió acometer los trabajos que conforman esta Tesis Doctoral, planteando en la zona, diferentes ensayos con la idea de conocer, si el injerto en pepino, con los cultivares empleados habitualmente, podía ser una alternativa real para los horticultores, tanto de Madrid, como los de las zonas cercanas de Toledo y Guadalajara. Se pretendía conocer sobre todo las repercusiones agronómicas y si esta técnica podría emplearse en solitario o era necesario complementarla con otras alternativas: desinfectantes químicos, solarización, biofumigación e incluso desinfección con vapor de agua. Los ensayos fueron realizados de forma secuencial entre el año 1999 y el 2011, comprobándose en primer lugar que el empleo de portainjertos híbridos de calabaza era posible con los cultivares de pepino corto tipo español, mayoritariamente empleados en los últimos años del siglo XX y primeros del XXI, fundamentalmente: Serena. Tras los primeros ensayos, Shintoza parecía el portainjerto híbrido de calabaza (Cucurbita maxima x C. moschata) con mejores perspectivas de empleo, pues presentaba la ventaja adicional de ser bien conocido por los semilleros que producen planta injertada al ser, en esos momentos, el portainjerto más empleado en sandía, lo que garantizaba por su lado, su empleo en pepino, y que los horticultores pudiesen disponer de planta injertada. Más adelante los trabajos se encaminaron hacia la determinación de la densidad y tipo de poda más adecuado para la planta injertada, realizándose múltiples ensayos en esta dirección, que culminaron con la conclusión de que el extravigor que los portainjertos conferían a las plantas permitía conducir estas a dos o más brazos (se suelen emplear dos, por mejor adaptación a los trabajos de manejo de la planta por parte de los agricultores), con lo que se podría disminuir la densidad de planta y por tanto ahorrar en este capítulo, cosa que preocupaba y preocupa a los agricultores. Se llegó a determinar que es posible reducir la densidad de plantación en alrededor de un 25%, estando la densidad de brazos más adecuada entre 3 y 3.5 br•m-2. Tras las primeras decisiones tomadas sobre el portainjerto y la densidad más adecuada, se continuó con el estudio de adaptación de estas propuestas a los nuevos cultivares que las empresas de semillas iban proponiendo y los agricultores adoptando. Estas acciones se complementaron con la introducción de nuevos portainjertos susceptibles de sustituir a Shintoza o rotar con él para cambiar de sistema radicular, lo que es conveniente cuando se emplean, como es el caso, portainjertos que no son resistentes a nematodos, principalmente de la especie Meloidogyne incognita, el mayor problema en la zona, debido al suelo. Cultivares como Trópico, en un primer momento, y Urano y Motril más recientemente, se adaptaron muy bien a esta técnica. Entre los portainjertos que mostraron buena adaptación a la técnica de injerto y suficientemente buena compatibilidad con la mayoría de los cultivares ensayados destacan: RS-841, Strongtosa y Camel. Azman también mostró un comportamiento relevante, pero este portainjerto no podrá ser empleado, al ser recientemente retirado del mercado por la empresa que lo obtuvo y comercializó Aunque no era el objetivo principal de esta Tesis Doctoral, se ha comprobado que puede ser interesante combinar el empleo del injerto con otras técnicas alternativas al bromuro de metilo para superar los problemas debidos a enfermedades del suelo o nematodos, pero debe seguirse trabajando pues este es un tema en continua evolución, tanto si se trata de desinfectantes, a la mayoría de los cuales les está siendo retirado el permiso para su comercialización, como de otros métodos como la biofumigación o el empleo de vapor de agua. Queda muy claro que el injerto puede considerarse entre los métodos respetuosos con el medio ambiente, si no el que más, en lo que alternativas al bromuro de metilo se refiere. También en otro momento, se comprobó que con plantas injertadas es posible reducir el aporte de nutrientes, sobre todo nitrógeno, lo que además de un ahorro supone una mejora más desde el punto de vista medioambiental. En definitiva, queda demostrado que es factible el empleo del injerto en pepino corto tipo español, que las selecciones de los híbridos entre Cucurbita maxima y C. moschata que habitualmente se están empleando en sandía son también de aplicación en estos pepinos y que su empleo puede llevarnos a producciones suficientemente remuneradoras, alargándose en muchos casos el ciclo y no modificando, de forma apreciable, la calidad. Queda también demostrado que aunque los portainjertos no sean resistentes a nematodos, su extravigor les hace desarrollarse, desde el punto de vista productivo, suficientemente, llegando por tanto, a “convivir” con ese problema. Al no ser resistentes los portainjertos, y permanecer e incluso agravarse el problema de nematodos es conveniente poder contar con diferentes portainjertos que nos permitan rotar entre ellos y utilizar diferentes sistemas radiculares que harán menos fácil el parasitismo de los nematodos, como recomiendan los nematólogos que se haga. ABSTRACT Vegetable grafting is one of the most current practices in horticulture, not only in Spain, but also in other Western and Asian countries, such as Japan, South Korea, China, the Philippines, etc. This is a decades-old, widespread technique: In fact, most cucurbit and solanaceous crops in Japan and Korea are grafted. At the end of the 1990s, it was clear that methyl bromide had an expiry date. Consequently, the areas strongly dependant on this soil disinfectant had to look for alternatives as quickly as possible. Besides, these had to be as environmentally friendly as possible and should not increase production costs significantly. The cucumber has been and still is the most important crop in greenhouses of the Comunidad de Madrid and in areas near Toledo and Guadalajara. Cucumber growers used methyl bromide systematically to disinfect the soil. The banning of this chemical product brought about uncertainty, which encouraged the search for different alternatives. After analyzing the different possibilities and taking into account the good results of watermelon grafting in Almería, it was decided to carry out the works that make up this doctoral thesis. Different trials were made in order to know if the cultivars used in cucumber grafting might be a real alternative for farmers, not only in Madrid, but also in the areas near Toledo and Guadalajara. The main aim was to assess the agronomic repercussions and whether that technique could be used alone, or if other complementary alternatives, such as chemical disinfectants, solarisation, biofumigation, or even steam disinfection, were necessary. Trials were carried out sequentially from 1999 to 2011. It was observed that the use of pumpkin hybrid rootstocks could be applied to cultivars of Spanish short cucumbers, mainly grown in the late 20th and early 21st centuries eg Serena. After the early trials, Shintoza (Cucurbita maxima x C. moschata), a pumpkin hybrid rootstock, seemed to be the best option, as it had the additional advantage of being well known by nurseries growing grafting plants. Bearing this in mind, Shintoza was then the hybrid rootstock to be used in cucumbers and consequently growers could have grafted plants at their disposal. Later on, research was focused on density and the most adequate type of pruning, by carrying out several trials. These experiments showed that, the extra vigour the rootstocks gave to the plants, allowed them to have two or three stems, (normally nurserymen use two, as it is easier for them to manage the plants). These findings would lead to the lessening the density of the plant and thus reduce costs, something which worried and still worries farmers. It was stated that it would be possible to reduce the density of the plants by about 25%, the optimum density of the stems ranging from 3 to 3.5 stem-m-2. Once decisions were taken both on the rootstock and the appropriate density, we went on to study how to apply these proposals to the new cultivars which the seed companies were proposing and the farmers were applying. These measures were complemented with the introduction of new rootstocks capable of replacing Shintoza, or rotating with it in order to change the root system. This is particularly necessary when rootstocks, non-resistant to nematodes, mainly of the species Meloidogyne incognita, are used. This is the main problem due to the soil of that area. Cultivars such as Trópico, at first, and Urano and Motril, more recently, adapted quite well to this technique. Among the rootstocks which adapted well to grafting and which were compatible with most tested cultivars, were, in particular, RS-841 Strongtosa and Camel. The behaviour of Azman was worth studying, but this rootstock was removed from the market by the company which had bought and commercialized it. Although not the main purpose of the research, it was observed that combining grafting with other alternatives to methyl bromide in order to overcome problems due to soil diseases or nematodes may be worthwhile. However, further research is needed, as this topic is in constant evolution, not only when we come to disinfectants, most of which are being affected by the removal of the permit for commercialization, but also when we refer to other techniques such as biofumigation or the use of steam. Results also showed that grafted plants may reduce the amount of fertilizers, particularly nitrogen, used: This means both saving money and the protection of the environment. We may conclude by saying that grafting Spanish short cucumbers is feasible, that the selections of the hybrids between Cucurbita maxima and C. moschata, habitually used in watermelon grafting, can also be applied to these cucumbers. It can also be concluded that the use of these grafting techniques may lead to profitable yields, by lengthening the growing cycle in many cases and by maintaining the quality to a large extent. Although these rootstocks are not resistant to nematodes, the results showed that their extra vigour enables them to develop in terms of production, and thus they cope with this problem. Since these rootstocks are not resistant to nematodes and the problem with these nematodes may even worsen, it is recommended that different types of rootstocks should be available to enable both the rotation and the use of different root systems, which will encourage the parasitism of nematodes.
Resumo:
Virus emergence is a complex phenomenon, which generally involves spread to a new host from a wild host, followed by adaptation to the new host. Although viruses account for the largest fraction of emerging crop pathogens, knowledge about their emergence is incomplete. We address here the question of whether Pepino mosaic virus (PepMV) emergence as a major tomato pathogen worldwide could have involved spread from wild to cultivated plant species and host adaptation. For this, we surveyed natural populations of wild tomatoes in southern Peru for PepMV infection. PepMV incidence, genetic variation, population structure, and accumulation in various hosts were analyzed. PepMV incidence in wild tomatoes was high, and a strain not yet reported in domestic tomato was characterized. This strain had a wide host range within the Solanaceae, multiplying efficiently in most assayed Solanum species and being adapted to wild tomato hosts. Conversely, PepMV isolates from tomato crops showed evidence of adaptation to domestic tomato, possibly traded against adaptation to wild tomatoes. Phylogenetic reconstructions indicated that the most probable ancestral sequence came from a wild Solanum species. A high incidence of PepMV in wild tomato relatives would favor virus spread to crops and its efficient multiplication in different Solanum species, including tomato, allowing its establishment as an epidemic pathogen. Later, adaptation to tomato, traded off against adaptation to other Solanum species, would isolate tomato populations from those in other hosts.
Resumo:
Actualmente, la gestión de sistemas de Manejo Integrado de Plagas (MIP) en cultivos hortícolas tiene por objetivo priorizar los métodos de control no químicos en detrimento del consumo de plaguicidas, según recoge la directiva europea 2009/128/CE ‘Uso Sostenible de Plaguicidas’ (OJEC, 2009). El uso de agentes de biocontrol como alternativa a la aplicación de insecticidas es un elemento clave de los sistemas MIP por sus innegables ventajas ambientales que se utiliza ampliamente en nuestro país (Jacas y Urbaneja, 2008). En la región de Almería, donde se concentra el 65% de cultivo en invernadero de nuestro país (47.367 ha), MIP es la principal estrategia en pimiento (MAGRAMA, 2014), y comienza a serlo en otros cultivos como tomate o pepino. El cultivo de pepino, con 8.902 ha (MAGRAMA, 2013), tiene un protocolo semejante al pimiento (Robledo et al., 2009), donde la única especie de pulgón importante es Aphis gossypii Glover. Sin embargo, pese al continuo incremento de la superficie de cultivo agrícola bajo sistemas MIP, los daños originados por virosis siguen siendo notables. Algunos de los insectos presentes en los cultivos de hortícolas son importantes vectores de virus, como los pulgones, las moscas blancas o los trips, cuyo control resulta problemático debido a su elevada capacidad para transmitir virus vegetales incluso a una baja densidad de plaga (Holt et al., 2008; Jacas y Urbaneja, 2008). Las relaciones que se establecen entre los distintos agentes de un ecosistema son complejas y muy específicas. Se ha comprobado que, pese a que los enemigos naturales reducen de manera beneficiosa los niveles de plaga, su incorporación en los sistemas planta-insecto-virus puede desencadenar complicadas interacciones con efectos no deseables (Dicke y van Loon, 2000; Jeger et al., 2011). Así, los agentes de biocontrol también pueden inducir a que los insectos vectores modifiquen su comportamiento como respuesta al ataque y, con ello, el grado de dispersión y los patrones de distribución de las virosis que transmiten (Bailey et al., 1995; Weber et al., 1996; Hodge y Powell, 2008a; Hodge et al., 2011). Además, en ocasiones el control biológico por sí solo no es suficiente para controlar determinadas plagas (Medina et al., 2008). Entre los métodos que se pueden aplicar bajo sistemas MIP están las barreras físicas que limitan la entrada de plagas al interior de los invernaderos o interfieren con su movimiento, como pueden ser las mallas anti-insecto (Álvarez et al., 2014), las mallas fotoselectivas (Raviv y Antignus, 2004; Weintraub y Berlinger, 2004; Díaz y Fereres, 2007) y las mallas impregnadas en insecticida (Licciardi et al., 2008; Martin et al., 2014). Las mallas fotoselectivas reducen o bloquean casi por completo la transmisión de radiación UV, lo que interfiere con la visión de los insectos y dificulta o impide la localización del cultivo y su establecimiento en el mismo (Raviv y Antignus, 2004; Weintraub, 2009). Se ha comprobado cómo su uso puede controlar los pulgones y las virosis en cultivo de lechuga (Díaz et al., 2006; Legarrea et al., 2012a), así como la mosca blanca, los trips y los ácaros, y los virus que estos transmiten en otros cultivos (Costa y Robb, 1999; Antignus et al., 2001; Kumar y Poehling, 2006; Doukas y Payne, 2007a; Legarrea et al., 2010). Sin embargo, no se conoce perfectamente el modo de acción de estas barreras, puesto que existe un efecto directo sobre la plaga y otro indirecto mediado por la planta, cuya fisiología cambia al desarrollarse en ambientes con falta de radiación UV, y que podría afectar al ciclo biológico de los insectos fitófagos (Vänninen et al., 2010; Johansen et al., 2011). Del mismo modo, es necesario estudiar la compatibilidad de esta estrategia con los enemigos naturales de las plagas. Hasta la fecha, los estudios han evidenciado que los agentes de biocontrol pueden realizar su actividad bajo ambientes pobres en radiación UV (Chyzik et al., 2003; Chiel et al., 2006; Doukas y Payne, 2007b; Legarrea et al., 2012c). Otro método basado en barreras físicas son las mallas impregnadas con insecticidas, que se han usado tradicionalmente en la prevención de enfermedades humanas transmitidas por mosquitos (Martin et al., 2006). Su aplicación se ha ensayado en agricultura en ciertos cultivos al aire libre (Martin et al., 2010; Díaz et al., 2004), pero su utilidad en cultivos protegidos para prevenir la entrada de insectos vectores en invernadero todavía no ha sido investigada. Los aditivos se incorporan al tejido durante el proceso de extrusión de la fibra y se liberan lentamente actuando por contacto en el momento en que el insecto aterriza sobre la malla, con lo cual el riesgo medioambiental y para la salud humana es muy limitado. Los plaguicidas que se emplean habitualmente suelen ser piretroides (deltametrina o bifentrín), aunque también se ha ensayado dicofol (Martin et al., 2010) y alfa-cipermetrina (Martin et al., 2014). Un factor que resulta de vital importancia en este tipo de mallas es el tamaño del poro para facilitar una buena ventilación del cultivo, al tiempo que se evita la entrada de insectos de pequeño tamaño como las moscas blancas (Bethke y Paine, 1991; Muñoz et al., 1999). Asimismo, se plantea la necesidad de estudiar la compatibilidad de estas mallas con los enemigos naturales. Es por ello que en esta Tesis Doctoral se plantea la necesidad de evaluar nuevas mallas impregnadas que impidan el paso de insectos de pequeño tamaño al interior de los invernaderos, pero que a su vez mantengan un buen intercambio y circulación de aire a través del poro de la malla. Así, en la presente Tesis Doctoral, se han planteado los siguientes objetivos generales a desarrollar: 1. Estudiar el impacto de la presencia de parasitoides sobre el grado de dispersión y los patrones de distribución de pulgones y las virosis que éstos transmiten. 2. Conocer el efecto directo de ambientes pobres en radiación UV sobre el comportamiento de vuelo de plagas clave de hortícolas y sus enemigos naturales. 3. Evaluar el efecto directo de la radiación UV-A sobre el crecimiento poblacional de pulgones y mosca blanca, y sobre la fisiología de sus plantas hospederas, así como el efecto indirecto de la radiación UV-A en ambas plagas mediado por el crecimiento de dichas planta hospederas. 4. Caracterización de diversas mallas impregnadas en deltametrina y bifentrín con diferentes propiedades y selección de las óptimas para el control de pulgones, mosca blanca y sus virosis asociadas en condiciones de campo. Estudio de su compatibilidad con parasitoides. ABSTRACT Insect vectors of plant viruses are the main agents causing major economic losses in vegetable crops grown under protected environments. This Thesis focuses on the implementation of new alternatives to chemical control of insect vectors under Integrated Pest Management programs. In Spain, biological control is the main pest control strategy used in a large part of greenhouses where horticultural crops are grown. The first study aimed to increase our knowledge on how the presence of natural enemies such as Aphidius colemani Viereck may alter the dispersal of the aphid vector Aphis gossypii Glover (Chapter 4). In addition, it was investigated if the presence of this parasitoid affected the spread of aphid-transmitted viruses Cucumber mosaic virus (CMV, Cucumovirus) and Cucurbit aphid-borne yellows virus (CABYV, Polerovirus) infecting cucumber (Cucumis sativus L). SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersal in the short term, which enhanced CMV spread, though consequences of parasitism suggested potential benefits for disease control in the long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV in the long term. The flight activity of pests Myzus persicae (Sulzer), Bemisia tabaci (Gennadius) and Tuta absoluta (Meyrick), and natural enemies A. colemani and Sphaerophoria rueppellii (Weidemann) under UV-deficient environments was studied under field conditions (Chapter 5). One-chamber tunnels were covered with cladding materials with different UV transmittance properties. Inside each tunnel, insects were released from tubes placed in a platform suspended from the ceiling. Specific targets were located at different distances from the platform. The ability of aphids and whiteflies to reach their targets was diminished under UV-absorbing barriers, suggesting a reduction of vector activity under this type of nets. Fewer aphids reached distant traps under UV-absorbing nets, and significantly more aphids could fly to the end of the tunnels covered with non-UV blocking materials. Unlike aphids, differences in B. tabaci captures were mainly found in the closest targets. The oviposition of lepidopteran T. absoluta was also negatively affected by a UV-absorbing cover. The photoselective barriers were compatible with parasitism and oviposition of biocontrol agents. Apart from the direct response of insects to UV radiation, plant-mediated effects influencing insect performance were investigated (Chapter 6). The impact of UV-A radiation on the performance of aphid M. persicae and whitefly B. tabaci, and growth and leaf physiology of host plants pepper and eggplant was studied under glasshouse conditions. Plants were grown inside cages covered by transparent and UV-A-opaque plastic films. Plant growth and insect fitness were monitored. Leaves were harvested for chemical analysis. Pepper plants responded directly to UV-A by producing shorter stems whilst UV-A did not affect the leaf area of either species. UV-A-treated peppers had higher content of secondary metabolites, soluble carbohydrates, free amino acids and proteins. Such changes in tissue chemistry indirectly promoted aphid performance. For eggplants, chlorophyll and carotenoid levels decreased with supplemental UVA but phenolics were not affected. Exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues, as compounds implied in pest nutrition were unaltered. Lastly, the efficacy of a wide range of Long Lasting Insecticide Treated Nets (LLITNs) was studied under laboratory and field conditions. This strategy aimed to prevent aphids and whiteflies to enter the greenhouse by determining the optimum mesh size (Chapter 7). This new approach is based on slow release deltamethrin- and bifenthrin-treated nets with large hole sizes that allow improved ventilation of greenhouses. All LLITNs produced high mortality of M. persicae and A. gossypii although their efficacy decreased over time with sun exposure. It was necessary a net with hole size of 0.29 mm2 to exclude B. tabaci under laboratory conditions. The feasibility of two selected nets was studied in the field under a high insect infestation pressure in the presence of CMV- and CABYV-infected cucumber plants. Besides, the compatibility of parasitoid A. colemani with bifenthrin-treated nets was studied in parallel field experiments. Both nets effectively blocked the invasion of aphids and reduced the incidence of both viruses, however they failed to exclude whiteflies. We found that our LLITNs were compatible with parasitoid A. colemani. As shown, the role of natural enemies has to be taken into account regarding the dispersal of insect vectors and subsequent spread of plant viruses. The additional benefits of novel physicochemical barriers, such as photoselective and insecticide-impregnated nets, need to be considered in Integrated Pest Management programs of vegetable crops grown under protected environments.
Resumo:
Los patógenos han desarrollado estrategias para sobrevivir en su entorno, infectar a sus huéspedes, multiplicarse dentro de estos y posteriormente transmitirse a otros huéspedes. Todos estos componentes hacen parte de la eficacia biológica de los patógenos, y les permiten ser los causantes de enfermedades infecciosas tanto en hombres y animales, como en plantas. El proceso de infección produce efectos negativos en la eficacia biológica del huésped y la gravedad de los efectos, dependerá de la virulencia del patógeno. Por su parte, el huésped ha desarrollado mecanismos de respuesta en contra del patógeno, tales como la resistencia, por la que reduce la multiplicación del patógeno, o la tolerancia, por la que disminuye el efecto negativo de la infección. Estas respuestas del huésped a la infección producen efectos negativos en la eficacia biológica del patógeno, actuando como una presión selectiva sobre su población. Si la presión selectiva sobre el patógeno varía según el huésped, se predice que un mismo patógeno no podrá aumentar su eficacia biológica en distintos huéspedes y estará más adaptado a un huésped y menos a otro, disminuyendo su gama de huéspedes. Esto supone que la adaptación de un patógeno a distintos huéspedes estará a menudo dificultada por compromisos (trade-off) en diferentes componentes de la eficacia biológica del patógeno. Hasta el momento, la evidencia de compromisos de la adaptación del patógeno a distintos huéspedes no es muy abundante, en lo que se respecta a los virus de plantas. En las últimas décadas, se ha descrito un aumento en la incidencia de virus nuevos o previamente descritos que producen enfermedades infecciosas con mayor gravedad y/o diferente patogenicidad, como la infección de huéspedes previamente resistentes. Esto se conoce como la emergencia de enfermedades infecciosas y está causada por patógenos emergentes, que proceden de un huésped reservorio donde se encuentran adaptados. Los huéspedes que actúan como reservorios pueden ser plantas silvestres, que a menudo presentan pocos síntomas o muy leves a pesar de estar infectados con diferentes virus, y asimismo se encuentran en ecosistemas con ninguna o poca intervención humana. El estudio de los factores ecológicos y biológicos que actúan en el proceso de la emergencia de enfermedades infecciosas, ayudará a entender sus causas para crear estrategias de prevención y control. Los virus son los principales patógenos causales de la emergencia de enfermedades infecciosas en humanos, animales y plantas y un buen modelo para entender los procesos de la emergencia. Asimismo, las plantas a diferencia de los animales, son huéspedes fáciles de manipular y los virus que las afectan, más seguros para el trabajo en laboratorio que los virus de humanos y animales, otros modelos también usados en la investigación. Por lo tanto, la interacción virus – planta es un buen modelo experimental para el estudio de la emergencia de enfermedades infecciosas. El estudio de la emergencia de virus en plantas tiene también un interés particular, debido a que los virus pueden ocasionar pérdidas económicas en los cultivos agrícolas y poner en riesgo la durabilidad de la resistencia de plantas mejoradas, lo que supone un riesgo en la seguridad alimentaria con impactos importantes en la sociedad, comparables con las enfermedades infecciosas de humanos y animales domésticos. Para que un virus se convierta en un patógeno emergente debe primero saltar desde su huésped reservorio a un nuevo huésped, segundo adaptarse al nuevo huésped hasta que la infección dentro de la población de éste se vuelva independiente del reservorio y finalmente debe cambiar su epidemiología. En este estudio, se escogió la emergencia del virus del mosaico del pepino dulce (PepMV) en el tomate, como modelo experimental para estudiar la emergencia de un virus en una nueva especie de huésped, así como las infecciones de distintos genotipos del virus del moteado atenuado del pimiento (PMMoV) en pimiento, para estudiar la emergencia de un virus que aumenta su patogenicidad en un huésped previamente resistente. El estudio de ambos patosistemas nos permitió ampliar el conocimiento sobre los factores ecológicos y evolutivos en las dos primeras fases de la emergencia de enfermedades virales en plantas. El PepMV es un patógeno emergente en cultivos de tomate (Solanum lycopersicum) a nivel mundial, que se describió primero en 1980 infectando pepino dulce (Solanum muricatum L.) en Perú, y casi una década después causando una epidemia en cultivos de tomate en Holanda. La introducción a Europa posiblemente fue a través de semillas infectadas de tomate procedentes de Perú, y desde entonces se han descrito nuevos aislados que se agrupan en cuatro cepas (EU, LP, CH2, US1) que infectan a tomate. Sin embargo, el proceso de su emergencia desde pepino dulce hasta tomate es un interrogante de gran interés, porque es uno de los virus emergentes más recientes y de gran importancia económica. Para la emergencia de PepMV en tomate, se recolectaron muestras de tomate silvestre procedentes del sur de Perú, se analizó la presencia y diversidad de aislados de PepMV y se caracterizaron tanto biológicamente (gama de huéspedes), como genéticamente (secuencias genomicas). Se han descrito en diferentes regiones del mundo aislados de PMMoV que han adquirido la capacidad de infectar variedades previamente resistentes de pimiento (Capsicum spp), es decir, un típico caso de emergencia de virus que implica la ampliación de su gama de huéspedes y un aumento de patogenicidad. Esto tiene gran interés, ya que compromete el uso de variedades resistentes obtenidas por mejora genética, que es la forma de control de virus más eficaz que existe. Para estudiar la emergencia de genotipos altamente patogénicos de PMMoV, se analizaron clones biológicos de PMMoV procedentes de aislados de campo cuya patogenicidad era conocida (P1,2) y por mutagénesis se les aumentó la patogenicidad (P1,2,3 y P1,2,3,4), introduciendo las mutaciones descritas como responsables de estos fenotipos. Se analizó si el aumento de la patogenicidad conlleva un compromiso en la eficacia biológica de los genotipos de PMMoV. Para ello se evaluaron diferentes componentes de la eficacia biológica del virus en diferentes huéspedes con distintos alelos de resistencia. Los resultados de esta tesis demuestran: i). El potencial de las plantas silvestres como reservorios de virus emergentes, en este caso tomates silvestres del sur de Perú, así como la existencia en estas plantas de aislados de PepMV de una nueva cepa no descrita que llamamos PES. ii) El aumento de la gama de huéspedes no es una condición estricta para la emergencia de los virus de plantas. iii) La adaptación es el mecanismo más probable en la emergencia de PepMV en tomate cultivado. iv) El aumento de la patogenicidad tiene un efecto pleiotrópico en distintos componentes de la eficacia biológica, así mismo el signo y magnitud de este efecto dependerá del genotipo del virus, del huésped y de la interacción de estos factores. ABSTRACT host Pathogens have evolved strategies to survive in their environment, infecting their hosts, multiplying inside them and being transmitted to other hosts. All of these components form part of the pathogen fitness, and allow them to be the cause of infectious diseases in humans, animals, and plants. The infection process produces negative effects on the host fitness and the effects severity will depend on the pathogen virulence. On the other hand, hosts have developed response mechanisms against pathogens such as resistance, which reduces the growth of pathogens, or tolerance, which decreases the negative effects of infection. T he se responses of s to infection cause negative effects on the pathogen fitness, acting as a selective pressure on its population. If the selective pressures on pathogens va ry according to the host s , probably one pathogen cannot increase its fitness in different hosts and will be more adapted to one host and less to another, decreasing its host range. This means that the adaptation of one pathogen to different hosts , will be often limited by different trade - off components of biological effectiveness of pathogen. Nowadays , trade - off evidence of pathogen adaptation to different hosts is not extensive, in relation with plant viruses. In last decades, an increase in the incidence of new or previously detected viruses has been described, causing infectious diseases with increased severity and/or different pathogenicity, such as the hosts infection previously resistants. This is known as the emergence of infectious diseases and is caused by emerging pathogens that come from a reservoir host where they are adapted. The hosts which act as reservoirs can be wild plants, that often have few symptoms or very mild , despite of being infected with different viruses, and being found in ecosystems with little or any human intervention. The study of ecological and biological factors , acting in the process of the infectious diseases emergence will help to understand its causes to create strategies for its prevention and control. Viruses are the main causative pathogens of the infectious diseases emergence in humans, animals and plants, and a good model to understand the emergency processes. Likewise, plants in contrast to animals are easy host to handle and viruses that affect them, safer for laboratory work than viruses of humans and animals, another models used in research. Therefore, the interaction plant-virus is a good experimental model for the study of the infectious diseases emergence. The study of virus emergence in plants also has a particular interest, because the viruses can cause economic losses in agricultural crops and threaten the resistance durability of improved plants, it suppose a risk for food security with significant impacts on society, comparable with infectious diseases of humans and domestic animals. To become an emerging pathogen, a virus must jump first from its reservoir host to a new host, then adapt to a new host until the infection within the population becomes independent from the reservoir, and finally must change its epidemiology. In this study, the emergence of pepino mosaic virus (PepMV) in tomato, was selected as experimental model to study the emergence of a virus in a new host specie, as well as the infections of different genotypes of pepper mild mottle virus (PMMoV) in pepper, to study the emergence of a virus that increases its pathogenicity in a previously resistant host. The study of both Pathosystems increased our knowledge about the ecological and evolutionary factors in the two first phases of the emergence of viral diseases in plants. The PepMV is an emerging pathogen in tomato (Solanum lycopersicum L.) in the world, which was first described in 1980 by infecting pepino (Solanum muricatum L.) in Peru, and almost after a decade caused an epidemic in tomato crops in Netherlands. The introduction to Europe was possibly through infected tomato seeds from Peru, and from then have been described new isolates that are grouped in four strains (EU, LP, CH2, US1) that infect tomato. However, the process of its emergence from pepino up tomato is a very interesting question, because it is one of the newest emerging viruses and economically important. For the PepMV emergence in tomato, wild tomato samples from southern Peru were collected, and the presence and diversity of PepMV isolates were analyzed and characterized at biological (host range) and genetics (genomic sequences) levels. Isolates from PMMoV have been described in different world regions which have acquired the ability to infect pepper varieties that were previously resistants (Capsicum spp), it means, a typical case of virus emergence which involves the host range extension and an increased pathogenicity. This is of great interest due to involve the use of resistant varieties obtained by breeding, which is the most effective way to control virus. To study the emergence of highly pathogenic genotypes of PMMoV, biological clones from field isolates whose pathogenicity was known were analyzed (P1,2) and by mutagenesis we increased its pathogenicity (P1,2,3 and P1,2, 3,4), introducing the mutations described as responsible for these phenotypes. We analyzed whether the increased pathogenicity involves a trade-off in fitness of PMMoV genotypes. For this aim, different components of virus fitness in different hosts with several resistance alleles were evaluated. The results of this thesis show: i). The potential of wild plants as reservoirs of emerging viruses, in this case wild tomatoes in southern Peru, and the existence in these plants of PepMV isolates of a new undescribed strain that we call PES. ii) The host range expansion is not a strict condition for the plant virus emergence. iii) The adaptation is the most likely mechanism in the PepMV emergence in cultivated tomato. iv) The increased pathogenicity has a pleiotropic effect on several fitness components, besides the sign and magnitude of this effect depends on the virus genotype, the host and the interaction of both.
Resumo:
El 1 de enero de 2014 entró en vigor la Directiva Europea 2009/128/CE sobre uso sostenible de plaguicidas y el Real Decreto 1311/2012 por el cual se traspone dicha normativa comunitaria al ámbito nacional. Estos reglamentos establecen el marco legal por el que las explotaciones agrícolas deben cumplir los principios generales de la Gestión Integrada de Plagas (GIP). Los principios de la GIP dan preferencia a aquellos métodos de control que sean sostenibles y respetuosos con el medio ambiente, dando prioridad al control biológico, al físico y a otros de carácter no químico. Sin embargo, el uso de insecticidas selectivos con los enemigos naturales es necesario en ocasiones para el adecuado manejo de las plagas en cultivos hortícolas. Por ello, el objetivo general de esta Tesis ha sido aportar conocimientos para la mejora del control de plagas en cultivos hortícolas, mediante la integración de estrategias de lucha biológica, física y química. La primera de las líneas de investigación de esta Tesis se centró en el estudio del efecto de la presencia dos depredadores, larvas Chrysoperla carnea y adultos de Adalia bipunctata, en la dispersión del virus de transmisión no persistente Cucumber mosaic virus (CMV) y del virus de transmisión persistente Cucurbit aphid-borne yellows virus (CABYV), transmitidos por el pulgón Aphis gosypii en cultivo de pepino. La tasa de transmisión de CMV fue baja para los dos tiempos de evaluación ensayados (1 y 5 días), debido al limitado movimiento de su vector A. gossypii. Las plantas que resultaron infectadas se localizaron próximas a la fuente de inóculo central y la presencia de ambos enemigos naturales no incrementó significativamente el porcentaje de plantas ocupadas por pulgones ni la tasa de transmisión de CMV. Los patrones de distribución de A. gossypii y de CMV tan solo fueron coincidentes en las proximidades de la planta central infectada en la que se liberaron los insectos. En los ensayos con CABYV, la presencia de C. carnea y de A. bipunctata respectivamente provocó un incremento significativo de la dispersión de A. gossypii tras 14 días, pero no tras 7 días desde la liberación de los insectos. La reducción en el número inicial de pulgones en la planta central infectada con CABYV fue siempre mayor tras la liberación de C. carnea en comparación con A. bipunctata. Sin embargo, la tasa de transmisión de CABYV y su distribución espacial no se vieron significativamente modificadas por la presencia de ninguno de los depredadores, ni tras 7 días ni tras 14 días desde el inicio de los ensayos. Al igual que se estudió el efecto de la presencia de enemigos naturales en el comportamiento de las plagas y en la epidemiología de las virosis que transmiten, en una segunda línea de investigación se evaluó el posible efecto del consumo de pulgones portadores de virus por parte de los enemigos naturales. Este trabajo se llevó a cabo en el Laboratorio de Ecotoxicología del Departamento de Entomología de la Universidade Federal de Lavras (UFLA) (Brasil). En él se evaluó la influencia en los parámetros biológicos del enemigo natural Chrysoperla externa al alimentarse de Myzus persicae contaminados con el virus de transmisión persistente Potato leafroll virus (PLRV). El consumo de M. persicae contaminados con PLRV incrementó significativamente la duración de la fase larvaria, reduciendo también la supervivencia en comparación a otras dos dietas a base de M. persicae no contaminados con el virus y huevos del lepidóptero Ephestia kuehniella. La duración de la fase de pupa de C. externa no difirió significativamente entre las dietas a base de pulgones contaminados con PLRV y pulgones no contaminados, pero ambas fueron menores que con la dieta con huevos de E. kuehniella. Sin embargo, ni la supervivencia en la fase de pupa ni los parámetros reproductivos de los adultos emergidos mostraron diferencias significativas entre las dietas evaluadas. Por el contrario, la supervivencia de los adultos durante los 30 primeros días desde su emergencia sí se vio significativamente afectada por la dieta, siendo al término de este periodo del 54% para aquellos adultos de C. externa que durante su fase larvaria consumieron pulgones con PLRV. Dentro de la GIP, una de las estrategias de carácter físico que se emplean para el control de plagas y enfermedades en cultivos hortícolas protegidos es el uso de plásticos con propiedades fotoselectivas de absorción de la radiación ultravioleta (UV). Por ello, la tercera línea de investigación de la Tesis se centró en el estudio de los efectos directos e indirectos (mediados por la planta) de condiciones especiales de baja radiación UV sobre el crecimiento poblacional del pulgón A. gossypii y los parámetros biológicos del enemigo natural C. carnea, así como sobre las plantas de pepino en las que se liberaron los insectos. Los ensayos se realizaron en jaulones dentro de invernadero, utilizándose en el primero de ellos plantas de pepino sanas, mientras que en el segundo las plantas de pepino fueron previamente infectadas con CABYV para estudiar de qué manera afectaba la incidencia del virus en las mismas condiciones. Las condiciones de baja radiación UV (bajo plástico Térmico Antivirus®) ejercieron un efecto directo en las fases iniciales del cultivo de pepino, promoviendo su crecimiento, mientras que en fases más avanzadas del cultivo indujeron un aumento en el contenido en nitrógeno de las plantas. Las plantas de pepino que fueron sometidas a mayor intensidad de radiación UV (bajo plástico Térmico Blanco®) al inicio del cultivo mostraron un engrosamiento significativo de las paredes de las células epidérmicas del haz de las hojas, así como de la cutícula. El uso del plástico Térmico Antivirus®, utilizado como barrera fotoselectiva para crear condiciones de baja radiación UV, no alteró con respecto al plástico Térmico Blanco® (utilizado como control) el desarrollo poblacional del pulgón A. gossypii ni los parámetros biológicos evaluados en el depredador C. carnea. En el segundo experimento, realizado con plantas infectadas con CABYV, la incidencia de la virosis enmascaró las diferencias encontradas en experimento con plantas sanas, reduciendo aparentemente la influencia de las distintas condiciones de radiación UV. Por último, para el desarrollo de las estrategias de GIP es importante estudiar los posibles efectos secundarios que los plaguicidas pueden tener en los enemigos naturales de las plagas. Es por ello que en la Tesis se evaluaron la toxicidad y los efectos subletales (fecundidad y fertilidad) de flonicamida, flubendiamida, metaflumizona, spirotetramat, sulfoxaflor y deltametrina en los enemigos naturales C. carnea y A. bipunctata. Los efectos secundarios fueron evaluados por contacto residual tanto para larvas como para adultos de ambos enemigos naturales en condiciones de laboratorio. Flonicamida, flubendiamida, metaflumizona y spirotetramat fueron inocuos para larvas de último estadio y adultos de C. carnea y A. bipunctata. Por este motivo, estos insecticidas se presentan como buenos candidatos para ser incorporados dentro de programas de GIP en combinación con estos enemigos naturales para el control de plagas de cultivos hortícolas. Sulfoxaflor fue ligeramente tóxico para adultos de C. carnea y altamente tóxico para larvas de último estadio de A. bipunctata. Para A. bipunctata, sulfoxaflor y deltametrina fueron los compuestos más dañinos. Deltametrina fue también el compuesto más tóxico para larvas y adultos de C. carnea. Por tanto, el uso de deltametrina y sulfoxaflor en programas de GIP debería tomarse en consideración cuando se liberasen cualquiera de estos dos enemigos naturales debido al comportamiento tóxico que mostraron en condiciones de laboratorio. ABSTRACT On 1 January 2014 came into effect the Directive 2009/128/EC of the European Parliament about sustainable use of pesticides and the Royal Decree 1311/2012 that transposes the regulation to the Spanish level. These regulations establish the legal framework that agricultural holdings must adhere to in order to accomplish the general principles of Integrated Pest Management (IPM). The guidelines of IPM give priority to sustainable and eco-friendly pest control techniques, such as biological and physical measures. Nevertheless, the use of pesticides that are selective to natural enemies is sometimes a necessary strategy to implement accurate pest management programs in horticultural protected crops. Therefore, the general objective of this Thesis was to contribute to the improvement of pest management strategies in horticultural crops, by means of the integration of biological, physical and chemical techniques. The first research line of this Thesis was focused on the evaluation of the effects of two aphidophagous predators, Chrysoperla carnea larvae and Adalia bipunctata adults, on the spread of the non-persistently transmitted Cucumber mosaic virus (CMV, Cucumovirus) and the persistently transmitted Cucurbit aphid-borne yellows virus (CABYV, Polerovirus), by the aphid vector Aphis gossypii in a cucumber crop under greenhouse conditions. The CMV transmission rate was generally low, both after 1 and 5 days, due to the limited movement of its aphid vector A. gossypii. Infected plants were mainly located around the central virusinfected source plant, and the percentage of aphid occupation and CMV-infected plants did not differ significantly in absence and presence of natural enemies. The distribution patterns of A. gossypii and CMV were only coincident close to the central plant where insects were released. In the CABYV experiments, the presence of C. carnea larvae and A. bipunctata adults induced significant A. gossypii dispersal after 14 days but not after 7 days. The reduction in the initial aphid population established in the central plant was always higher for C. carnea than for A. bipunctata. Nevertheless, CABYV spread was not significantly modified by the presence of each predator either in the short term (7 days) or in the long term (14 days). Furthermore, the percentage of CABYV-infected plants did not significantly differ when each natural enemy was present in any evaluation period. It is important to evaluate the influence that natural enemies have on pest dynamics and on the spread of viral diseases, but it should be also taken into account the possible effect on the performance of natural enemies when they feed on preys that act as vectors of viruses. Thus, in a second research line developed in the Laboratory of Ecotoxicology, Department of Entomology, of the Universidade Federal de Lavras (UFLA) (Brazil), it was evaluated the performance of Chrysoperla externa under the condition of consuming Myzus persicae acting as vector of Potato leafroll virus (PLRV). The diet composed of PLRV-infected M. persicae significantly increased the length and reduced the survival rate, of the larval period in regard to the other two diets, composed of non-infected M. persicae and Ephestia kuehniella eggs. The lengths of the pupal stage were not significantly different between the aphid diets, but both were significantly shorter than that of E. kuehniella eggs. Neither pupal survival nor reproductive parameters revealed significant differences among the diets. Nevertheless, the adult survival curves during the first 30 days after emergence showed significant differences, reaching at the end of this interval a value of 54% for those C. externa adults fed on PLRVinfected aphids during their larval period. According to the IPM guidelines, one of the physical strategies for the control of pests and diseases in horticultural protected crops is the use of plastic films with photoselective properties that act as ultraviolet (UV) radiation blocking barriers. In this sense, the third research line of the Thesis dealt with the study of the direct and plant-mediated influence of low UV radiation conditions on the performance of the aphid A. gossypii and on the biological parameters of the natural enemy C. carnea, as well as on the cucumber plants where insects were released. The experiments were conducted inside cages under greenhouse conditions, using for the first one healthy cucumber plants, while for the second experiment the cucumber plants were previously infected with CABYV in order to assess the influence of the virus in the same conditions. The low UV radiation conditions (under Térmico Antivirus® plastic film) seemed to exert a direct effect in the early stages of cucumber plants, enhancing their growth, and in an increasing nitrogen content at further developmental stages. The higher UV radiation exposure (under Térmico Blanco® plastic film) in the early stages of the cucumber crop induced the thickening of the adaxial epidermal cell walls and the cuticle of leaves. The use of Térmico Antivirus® plastic film as a photoselective barrier to induce low UV radiation conditions did not modify, in regard to Térmico Blanco® plastic film (used as control), neither the population development of A. gossypii nor the studied biological parameters of the predator C. carnea. In the second experiment, done with CABYV-infected cucumber plants, the incidence of the virus seemed to mask the direct and plant-mediated influence of the different UV radiation conditions. In last term, for the development of IPM strategies it is important to study the potential side effects that pesticides might have on natural enemies. For this reason, in the Thesis were tested the toxicity and sublethal effects (fecundity and fertility) of flonicamid, flubendiamide, metaflumizone, spirotetramat, sulfoxaflor and deltamethrin on the natural enemies C. carnea and A. bipunctata. The side effects of the active ingredients of the insecticides were evaluated with residual contact tests for the larvae and adults of these predators under laboratory conditions. Flonicamid, flubendiamide, metaflumizone and spirotetramat were innocuous to last instar larvae and adults of C. carnea and A. bipunctata. Therefore, these pesticides are promising candidates for being incorporated into IPM programs in combination with these natural enemies for the control of particular greenhouse pests. In contrast, sulfoxaflor was slightly toxic to adults of C. carnea and was highly toxic to last instar larvae of A. bipunctata. For A. bipunctata, sulfoxaflor and deltamethrin were the most damaging compounds. Deltamethrin was also the most toxic compound to larvae and adults of C. carnea. In accordance with this fact, the use of sulfoxaflor and deltamethrin in IPM strategies should be taken into consideration when releasing either of these biological control agents, due to the toxic behavior observed under laboratory conditions.
Resumo:
En el complejo de plagas que atacan a los principales cultivos hortícolas protegidos, destacan principalmente los Hemípteros, y dentro de estos los pulgones, dada su importancia como vectores de virus que provocan considerables daños y pérdidas económicas. Debido a que la dispersión de la mayoría de los virus de plantas puede ser eficaz con densidades bajas de vectores y su control es muy complicado al no existir métodos curativos para su control, es necesario generar nuevos conocimientos sobre las interacciones virus-vector con el fin de desarrollar nuevas y eficaces estrategias de control. Por ello, el objetivo general de esta Tesis ha sido conocer el efecto de la infección viral (directo-mediado por la presencia del virus en el vector- e indirecto-mediado por las alteraciones físico-químicas que se originan en la planta como consecuencia de la infección viral-) sobre el comportamiento y eficacia biológica del vector Aphis gossypii Glover y sus posibles repercusiones en la epidemiología de virosis de transmisión no persistente (Cucumber mosaic virus, CMV, Cucumovirus) y persistente (Cucurbit aphid-borne yellows virus, CABYV, Polerovirus). El primer objetivo de esta Tesis Doctoral, se centró en el estudio del efecto indirecto del virus de transmisión no persistente CMV sobre el comportamiento alimenticio y la preferencia del pulgón A. gossypii en el cultivo de pepino. Los ensayos de despegue y aterrizaje mostraron que los pulgones que fueron liberados en las plantas de pepino infectadas con CMV tuvieron una mayor propensión en migrar hacia las plantas no infectadas (60, 120 y 180 minutos después de la liberación) que aquellos que fueron sometidos al tratamiento contrario (planta no infectada hacia planta infectada con CMV). El estudio de preferencia y asentamiento mostró que el vector A. gossypii prefiere asentarse en plantas infectadas con CMV en una etapa temprana de evaluación (30 minutos después de la liberación). Sin embargo, este comportamiento se revirtió en una etapa posterior (4 y 48 horas después de la liberación), donde los pulgones se asentaron más en las plantas no infectadas. A través de la técnica de Gráficos de Penetración Eléctrica (EPG) se observó un efecto indirecto del virus CMV, revelado por un cambio brusco en el comportamiento de prueba del pulgón a lo largo del tiempo, cuando éstos fueron expuestos a las plantas infectadas con CMV. Los primeros 15 minutos de registro EPG mostraron que los pulgones hicieron un número mayor de punciones intracelulares (potencial drops - pds) y pruebas en las plantas infectadas con CMV que en las plantas no infectadas. Por otra parte, la duración de la primera prueba fue más corta y la duración total de las pds por insecto fue mucho más larga en las plantas infectadas con CMV. Se observaron diferencias significativas en el tiempo transcurrido desde el final de la última pd hasta el final de la prueba, siendo ese tiempo más corto para los pulgones que estaban alimentándose en plantas infectadas con CMV. En la segunda hora de registro los pulgones rechazaron las plantas infectadas con CMV como fuente de alimento, permaneciendo menos tiempo en las fases de prueba en floema (fase de salivación – E1 y fase de ingestión del floema – E2). El comportamiento alimenticio observado sobre las plantas infectadas con CMV favorece la adquisición y posterior transmisión de los virus de transmisión no persistente, los cuales son adquiridos e inoculados durante la realización de pruebas intracelulares en las primeras pruebas de corta duración. En el segundo objetivo de la Tesis se evaluó el efecto directo e indirecto del virus de transmisión persistente CABYV en el comportamiento alimenticio y preferencia del pulgón A. gossypii en cultivo de pepino, especie susceptible al virus, y algodón, especie inmune al virus. No se observó un efecto directo del virus relevante en el comportamiento alimenticio del vector, ya que los resultados obtenidos a nivel floemático en plantas de pepino no se observaron en plantas de algodón, inmune al virus CABYV. Esto sugiere que los resultados obtenidos en pepino, pueden deberse a un “posible efecto indirecto” originado por la infección de las plantas susceptibles al virus durante la realización del ensayo, lo que indirectamente puede modificar el comportamiento del pulgón durante la fase de evaluación. Sin embargo, el virus CABYV modificó indirectamente el comportamiento alimenticio de su vector a través de cambios en la planta infectada. Los pulgones tardaron menos tiempo en llegar al floema, realizaron un mayor número de pruebas floemáticas y permanecieron durante más tiempo en actividades floemáticas en plantas infectadas con CABYV. El comportamiento observado sobre las plantas infectadas con CABYV favorece la adquisición de virus persistentes, los cuales son adquiridos durante la alimentación sostenida en floema. El estudio de preferencia y asentamiento de A. gossypii mostró que los pulgones virulíferos prefieren asentarse en plantas no infectadas a corto y largo plazo de evaluación (2, 4 y 48 horas después de la liberación). Los ensayos de despegue y aterrizaje mostraron que los pulgones virulíferos que fueron liberados en las plantas de pepino infectadas con CABYV tuvieron una mayor propensión en migrar hacia las plantas no infectadas (3, 6, 24 y 48 horas después de la liberación) que aquellos que fueron sometidos al tratamiento contrario (planta no infectada hacia planta infectada con CABYV). Sin embargo, los pulgones no virulíferos no mostraron preferencia por plantas de pepino no infectadas o infectadas con CABYV en ninguno de los ensayos (preferencia o despegue) o periodos evaluados (corto y largo plazo). Los resultados indican que el virus CABYV es capaz de modificar indirectamente el comportamiento alimenticio de su vector a través de cambios en la planta infectada, favoreciendo su adquisición por su principal vector, A. gossypii. Una vez que los pulgones tienen capacidad de transmitir el virus (virulíferos) se produce un cambio en su comportamiento prefiriendo asentarse sobre plantas no infectadas optimizándose así la dispersión viral. El tercer objetivo de la Tesis, fue evaluar los efectos directos e indirectos del virus CABYV así como los efectos indirectos del virus CMV en la eficacia biológica del vector A. gossypii. Los resultados obtenidos en los ensayos realizados con el virus persistente CABYV indican que el virus parece no modificar directamente ni indirectamente la eficacia biológica del vector en plantas de pepino o algodón, no observándose diferencias estadísticas en ninguno de los parámetros poblacionales evaluados (tiempo de desarrollo, tasa intrínseca de crecimiento, tiempo generacional medio, tasa media de crecimiento relativo y ninfas totales). En cuanto a los ensayos realizados con el virus no persistente, CMV, los resultados muestran un efecto indirecto del virus sobre la biología del vector. Así resultó que tanto la tasa intrínseca de crecimiento natural (rm) como la tasa media de crecimiento relativo (RGR) fueron más altas para pulgones crecidos sobre plantas infectadas con CMV que sobre plantas no infectadas, favoreciendo la reproducción y crecimiento poblacional del vector sobre plantas infectadas con CMV. Los resultados obtenidos en la presente Tesis, ofrecen un ejemplo de como los virus de plantas pueden manipular directa e indirectamente a su vector, maximizando así su dispersión entre las plantas. Esos nuevos conocimientos generados tienen implicaciones importantes en la transmisión, dispersión y en la epidemiología de los virus y deben ser considerados para diseñar o ajustar los modelos de simulación existentes y patrones de dispersión que describen las epidemias de estos virus. ABSTRACT The main objective of this Thesis has been to understand the effect of the viral infection (direct-mediated by the presence of the virus in the vector and indirect mediated by the chemical and physical changes originated in the plant as a consequence of the viral infection) on the behaviour and biological efficacy of the vector Aphis gossypii Glover and its consequences in the epidemiology of two viral diseases, one with non-persistent transmission (Cucumber mosaic virus, CMV, Cucumovirus) and another with persistent transmission (Cucurbit aphid-borne yellows virus, CABYV, Polerovirus). The first objective of this Thesis was the study of the indirect effect of the nonpersistent virus CMV on the feeding behaviour and preference of the aphid A. gossypii in cucumber plants. The results of the alighting and settling behaviour studies showed that aphids exhibited no preference to migrate from CMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), but showed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min after release. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected over mockinoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage and aphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph (EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of short superficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (second hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much less time spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour including an early increase in the number of short superficial probes and intracellular punctures followed by a phloem feeding deterrence is known to enhance the transmission efficiency of viruses transmitted in a NP manner. We conclude that CMV induces specific changes in a plant host that modify the alighting, settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spread of the virus. The second objective of this work was to evaluate the effects that the persistently aphid transmitted Cucurbit aphid-borne yellows virus (CABYV) can induce directly and indirectly on the alighting, settling and probing behaviour activities of the cotton aphid A. gossypii. Only minor direct changes on aphid feeding behaviour was observed due to CABYV when viruliferous aphids fed on mock-inoculated plants. However, the feeding behaviour of non-viruliferous aphids was very different on CABYV-infected than on mockinoculated plants. Non-viruliferous aphids spent longer time feeding from the phloem when plants were infected by CABYV than on mock-inoculated plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. The vector alighting and settling preference was compared between nonviruliferous and viruliferous aphids. Viruliferous aphids showed a clear preference for mockinoculated over CABYV-infected plants at short and long time, while such behaviour was not observed for non-viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimize the transmission and spread of the virus. The third objective was to evaluate the direct and indirect effects of CABYV and indirect effects of the CMV on the A. gossypii fitness. Obtained results for the persistent virus CABYV showed that the virus did not modify the vector fitness in cucumber or cotton plants. None of the evaluated variables was statistically significant (development time (d), intrinsic growth rate (rm), mean relative growth rate (RGR) and total number of nymphs). On the other hand, data obtained for the non-persistent virus (CMV) showed an indirect effect of the virus on the vector fitness. Thus, the rm and RGR were higher for aphids grown on CMV-infected plants compared to aphids grown on mock-inoculated plants. Overall, the obtained results are clear examples of how plant viruses could manipulate directly and indirectly vector behaviour to optimize its own dispersion. These results are important for a better understanding of transmission, dispersion and epidemiology of plant viruses transmitted by vectors. This information could be also considered to design or adjust simulation models and dispersion patterns that describe plant virus epidemics.