5 resultados para Operant Discrimination
em Universidad Politécnica de Madrid
Resumo:
This paper presents a computer vision system that successfully discriminates between weed patches and crop rows under uncontrolled lighting in real-time. The system consists of two independent subsystems, a fast image processing delivering results in real-time (Fast Image Processing, FIP), and a slower and more accurate processing (Robust Crop Row Detection, RCRD) that is used to correct the first subsystem's mistakes. This combination produces a system that achieves very good results under a wide variety of conditions. Tested on several maize videos taken of different fields and during different years, the system successfully detects an average of 95% of weeds and 80% of crops under different illumination, soil humidity and weed/crop growth conditions. Moreover, the system has been shown to produce acceptable results even under very difficult conditions, such as in the presence of dramatic sowing errors or abrupt camera movements. The computer vision system has been developed for integration into a treatment system because the ideal setup for any weed sprayer system would include a tool that could provide information on the weeds and crops present at each point in real-time, while the tractor mounting the spraying bar is moving
Resumo:
Brachypodium distachyon (2n = 2x = 10) is a small annual grass species where the existence of three different cytotypes (10, 20 and 30 chromosomes) has long been regarded as a case of autopolyploid series, with x = 5. However, it has been demonstrated that the cytotypes assumed to be polyploids represent two separate Brachypodium species recently named as B. stacei (2n = 2x = 20) and B. hybridum (2n = 4x = 30). The aim of this study was to find a PCR-based alternative approach that could replace standard cytotyping methods (i. e., chromosome counting and flow cytometry) to characterize each of the three Brachypodium species. We have analyzed with four microsatellite (SSR) markers eighty-three Brachypodium distachyon-type lines from varied locations in Spain, including the Balearic and Canary Islands. Within this set of lines, 64, 4 and 15 had 10, 20 and 30 chromosomes, respectively. The surveyed markers produced cytotype-specific SSR profiles. So, a single amplification product was generated in the diploid samples, with non-overlapping allelic ranges between the 2n = 10 and 2n = 20 cytotypes, whereas two bands, one in the size range of each of the diploid cytotypes, were amplified in the 2n = 30 lines. Furthermore, the remarkable size difference obtained with the SSR ALB165 allowed the identification of the Brachypodium species by simple agarose gel electrophoresis.
Resumo:
This research proposes a generic methodology for dimensionality reduction upon time-frequency representations applied to the classification of different types of biosignals. The methodology directly deals with the highly redundant and irrelevant data contained in these representations, combining a first stage of irrelevant data removal by variable selection, with a second stage of redundancy reduction using methods based on linear transformations. The study addresses two techniques that provided a similar performance: the first one is based on the selection of a set of the most relevant time?frequency points, whereas the second one selects the most relevant frequency bands. The first methodology needs a lower quantity of components, leading to a lower feature space; but the second improves the capture of the time-varying dynamics of the signal, and therefore provides a more stable performance. In order to evaluate the generalization capabilities of the methodology proposed it has been applied to two types of biosignals with different kinds of non-stationary behaviors: electroencephalographic and phonocardiographic biosignals. Even when these two databases contain samples with different degrees of complexity and a wide variety of characterizing patterns, the results demonstrate a good accuracy for the detection of pathologies, over 98%.The results open the possibility to extrapolate the methodology to the study of other biosignals.
Resumo:
This paper shows the preliminary results of the development and application of a procedure to filter the Acoustic Emission (AE) signals to distinguish between AE signals coming from friction and AE signals coming from concrete cracking. These signals were recorded during the trainings of an experiment carried out on a reinforced concrete frame subjected to dynamic loadings with the shaking table of the University of Granada (Spain). Discrimination between friction and cracking AE signals is the base to develop a successful procedure and damage index based on AE testing for health monitoring of RC structures subjected to earthquakes.
Resumo:
Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre- sponding functional connections. We applied beamformer source reconstruction to the resting state MEG record- ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was ob- tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re- gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introduc- ing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.